Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Signal ; 64: 109417, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31525437

ABSTRACT

Ischemic-postconditioning (iPostC) exerts cardioprotection by preserving redox homeostasis in the reperfused heart. This protective effect has been associated with the activation of endogenous antioxidant response driven by transcription factor Nrf2 and with the activation of 'reperfusion injury salvage kinases' (RISK) as PI3K, PKC and Erk1/2. Redox homeostasis is essential for normal cell physiology since reactive oxygen species (ROS) are crucial for processes that involve protein signaling. Thus, it has become clear that not only the perturbation of redox balance to oxidative state is deleterious but also towards a reductive state contributing to pathogenesis of diseases. However, there is still a scarce knowledge about the role of ROS in the cardioprotective signals mediated by RISK in postconditioned hearts. Therefore, we studied the role of ROS as initiator of RISK signaling molecules in iPostC-conferred cardioprotection. With the aim to study the relationship between redox-dependent RISK activation and the downstream activation of the transcription factor Nrf2, we evaluated the effect of redox signaling disruption by the effect of ascorbic acid in iPostC hearts. Our results showed that PKCε and Erk1/2 activation is redox-dependent and that concurs downstream with Nrf2 deficient activation. Besides, using inhibitors we found that neither PI3K nor Erk1/2 are directly related with Nrf2 activation, indicating that these kinases have other targets. We conclude that redox signaling participates in cardioprotection triggered by iPostC through the action of kinase-dependent and -independent mechanisms and concurred with the downstream regulation of Nrf2-mediated antioxidant response to prolonged redox balance during long reperfusion.


Subject(s)
Ischemic Postconditioning/methods , MAP Kinase Signaling System , Myocardial Infarction/therapy , Myocardial Reperfusion Injury , Myocardial Reperfusion/adverse effects , NF-E2-Related Factor 2/metabolism , Protein Kinase C-epsilon/metabolism , Animals , Male , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/prevention & control , Myocardium/metabolism , Myocardium/pathology , Oxidation-Reduction , Rats , Rats, Wistar , Reactive Oxygen Species/metabolism
2.
Cell Biol Int ; 40(12): 1349-1356, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27730705

ABSTRACT

In this work, we studied the effect of tamoxifen and cyclosporin A on mitochondrial permeability transition caused by addition of the thiol-oxidizing pair Cu2+ -orthophenanthroline. The findings indicate that tamoxifen and cyclosporin A circumvent the oxidative membrane damage manifested by matrix Ca2+ release, mitochondrial swelling, and transmembrane electrical gradient collapse. Furthermore, it was found that tamoxifen and cyclosporin A prevent the generation of TBARs promoted by Cu2+ -orthophenanthroline, as well as the inactivation of the mitochondrial enzyme aconitase and disruption of mDNA. Electrophoretic analysis was unable to demonstrate a cross-linking reaction between membrane proteins. Yet, it was found that Cu2+ -orthophenanthroline induced the generation of reactive oxygen species. It is thus plausible that membrane leakiness is due to an oxidative stress injury.


Subject(s)
Copper/toxicity , Mitochondria/drug effects , Mitochondria/metabolism , Organometallic Compounds/toxicity , Oxidative Stress/drug effects , Phenanthrolines/toxicity , Tamoxifen/pharmacology , Blotting, Western , Calcium/metabolism , Cyclosporine/pharmacology , DNA, Mitochondrial/metabolism , Electrophoresis, Polyacrylamide Gel , Glutathione/metabolism , Hydrogen Peroxide/metabolism , Mitochondria/pathology , Protective Agents/pharmacology , Thiobarbituric Acid Reactive Substances/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...