Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
2.
Biomater Adv ; 137: 212849, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35929277

ABSTRACT

The present work reports on a new approach based on electroactive microenvironments to mitigate skeletal muscle cancer. For that, piezoelectric films based on poly(vinylidene fluoride) have been applied to evaluate the influence of mechano- and/or electrical stimuli on rhabdomyosarcoma (RMS) proliferation. Human embryonal rhabdomyosarcoma (RD) cells were cultured on PVDF pristine films with different surface charge (non-poled, poled+ and poled-) and magnetic composites (10% and 20% Fe3O4, and 20% CFO filler content) to allow magneto-mechanical and magnetoelectrical stimulation films. Electrospun PVDF pristine (oriented and randomly) and magnetic (10% Fe3O4) fiber mats were also evaluated to take into consideration the morphology effect on cell response. It was found that the mechanical stimuli enhance RMS proliferation whereas the mechano-electrical decreases it. It was also verified that the RD cells proliferate better on randomly oriented fibers, whereas myoblast cells do it better in oriented ones. The obtained results confirm that electroactive microenvironments can be used to develop novel and effective approaches to deal with RMS cancer, that can be extrapolated to others cancer types.


Subject(s)
Muscle Neoplasms , Polymers , Biocompatible Materials/pharmacology , Cell Line, Tumor , Humans , Myoblasts , Polymers/pharmacology , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL
...