Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters











Publication year range
1.
Cell ; 187(14): 3531-3540.e13, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38942016

ABSTRACT

A number of species have recently recovered from near-extinction. Although these species have avoided the immediate extinction threat, their long-term viability remains precarious due to the potential genetic consequences of population declines, which are poorly understood on a timescale beyond a few generations. Woolly mammoths (Mammuthus primigenius) became isolated on Wrangel Island around 10,000 years ago and persisted for over 200 generations before becoming extinct around 4,000 years ago. To study the evolutionary processes leading up to the mammoths' extinction, we analyzed 21 Siberian woolly mammoth genomes. Our results show that the population recovered quickly from a severe bottleneck and remained demographically stable during the ensuing six millennia. We find that mildly deleterious mutations gradually accumulated, whereas highly deleterious mutations were purged, suggesting ongoing inbreeding depression that lasted for hundreds of generations. The time-lag between demographic and genetic recovery has wide-ranging implications for conservation management of recently bottlenecked populations.


Subject(s)
Extinction, Biological , Genome , Mammoths , Mutation , Animals , Mammoths/genetics , Genome/genetics , Siberia , Phylogeny , Evolution, Molecular , Time Factors
2.
Mol Ecol ; 33(2): e17213, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38014725

ABSTRACT

International policy recently adopted commitments to maintain genetic diversity in wild populations to secure their adaptive potential, including metrics to monitor temporal trends in genetic diversity - so-called indicators. A national programme for assessing trends in genetic diversity was recently initiated in Sweden. Relating to this effort, we systematically assess contemporary genome-wide temporal trends (40 years) in wild populations using the newly adopted indicators and whole genome sequencing (WGS). We use pooled and individual WGS data from brown trout (Salmo trutta) in eight alpine lakes in protected areas. Observed temporal trends in diversity metrics (nucleotide diversity, Watterson's Ï´ and heterozygosity) lie within proposed acceptable threshold values for six of the lakes, but with consistently low values in lakes above the tree line and declines observed in these northern-most lakes. Local effective population size is low in all lakes, highlighting the importance of continued protection of interconnected systems to allow genetic connectivity for long-term viability of these populations. Inbreeding (FROH ) spans 10%-30% and is mostly represented by ancient (<1 Mb) runs of homozygosity, with observations of little change in mutational load. We also investigate adaptive dynamics over evolutionarily short time frames (a few generations); identifying putative parallel selection across all lakes within a gene pertaining to skin pigmentation as well as candidates of selection unique to specific lakes and lake systems involved in reproduction and immunity. We demonstrate the utility of WGS for systematic monitoring of natural populations, a priority concern if genetic diversity is to be protected.


Subject(s)
Genetic Variation , Genome , Animals , Genetic Variation/genetics , Genome/genetics , Trout/genetics , Inbreeding , Population Density , Lakes
3.
Curr Biol ; 33(9): 1753-1764.e4, 2023 05 08.
Article in English | MEDLINE | ID: mdl-37030294

ABSTRACT

Ancient genomes provide a tool to investigate the genetic basis of adaptations in extinct organisms. However, the identification of species-specific fixed genetic variants requires the analysis of genomes from multiple individuals. Moreover, the long-term scale of adaptive evolution coupled with the short-term nature of traditional time series data has made it difficult to assess when different adaptations evolved. Here, we analyze 23 woolly mammoth genomes, including one of the oldest known specimens at 700,000 years old, to identify fixed derived non-synonymous mutations unique to the species and to obtain estimates of when these mutations evolved. We find that at the time of its origin, the woolly mammoth had already acquired a broad spectrum of positively selected genes, including ones associated with hair and skin development, fat storage and metabolism, and immune system function. Our results also suggest that these phenotypes continued to evolve during the last 700,000 years, but through positive selection on different sets of genes. Finally, we also identify additional genes that underwent comparatively recent positive selection, including multiple genes related to skeletal morphology and body size, as well as one gene that may have contributed to the small ear size in Late Quaternary woolly mammoths.


Subject(s)
Mammoths , Animals , Mammoths/genetics , Sequence Analysis, DNA , Genomics/methods , Genome/genetics , Mutation , Fossils , Evolution, Molecular
4.
iScience ; 25(8): 104826, 2022 Aug 19.
Article in English | MEDLINE | ID: mdl-35992080

ABSTRACT

Woolly mammoths had a set of adaptations that enabled them to thrive in the Arctic environment. Many mammoth-specific single nucleotide polymorphisms (SNPs) responsible for unique mammoth traits have been previously identified from ancient genomes. However, a multitude of other genetic variants likely contributed to woolly mammoth evolution. In this study, we sequenced two woolly mammoth genomes and combined these with previously sequenced mammoth and elephant genomes to conduct a survey of mammoth-specific deletions and indels. We find that deletions are highly enriched in non-coding regions, suggesting selection against structural variants that affect protein sequences. Nonetheless, at least 87 woolly mammoth genes contain deletions or indels that modify the coding sequence, including genes involved in skeletal morphology and hair growth. These results suggest that deletions and indels contributed to the unique phenotypic adaptations of the woolly mammoth, and were potentially critical to surviving in its natural environment.

5.
BMC Bioinformatics ; 23(1): 228, 2022 Jun 13.
Article in English | MEDLINE | ID: mdl-35698034

ABSTRACT

BACKGROUND: Many wild species have suffered drastic population size declines over the past centuries, which have led to 'genomic erosion' processes characterized by reduced genetic diversity, increased inbreeding, and accumulation of harmful mutations. Yet, genomic erosion estimates of modern-day populations often lack concordance with dwindling population sizes and conservation status of threatened species. One way to directly quantify the genomic consequences of population declines is to compare genome-wide data from pre-decline museum samples and modern samples. However, doing so requires computational data processing and analysis tools specifically adapted to comparative analyses of degraded, ancient or historical, DNA data with modern DNA data as well as personnel trained to perform such analyses. RESULTS: Here, we present a highly flexible, scalable, and modular pipeline to compare patterns of genomic erosion using samples from disparate time periods. The GenErode pipeline uses state-of-the-art bioinformatics tools to simultaneously process whole-genome re-sequencing data from ancient/historical and modern samples, and to produce comparable estimates of several genomic erosion indices. No programming knowledge is required to run the pipeline and all bioinformatic steps are well-documented, making the pipeline accessible to users with different backgrounds. GenErode is written in Snakemake and Python3 and uses Conda and Singularity containers to achieve reproducibility on high-performance compute clusters. The source code is freely available on GitHub ( https://github.com/NBISweden/GenErode ). CONCLUSIONS: GenErode is a user-friendly and reproducible pipeline that enables the standardization of genomic erosion indices from temporally sampled whole genome re-sequencing data.


Subject(s)
Computational Biology , Genome , Animals , Endangered Species , Genomics , Reproducibility of Results , Software
6.
Trends Ecol Evol ; 37(5): 420-429, 2022 05.
Article in English | MEDLINE | ID: mdl-35086740

ABSTRACT

Although genetic diversity has been recognized as a key component of biodiversity since the first Convention on Biological Diversity (CBD) in 1993, it has rarely been included in conservation policies and regulations. Even less appreciated is the role that ancient and historical DNA (aDNA and hDNA, respectively) could play in unlocking the temporal dimension of genetic diversity, allowing key conservation issues to be resolved, including setting baselines for intraspecies genetic diversity, estimating changes in effective population size (Ne), and identifying the genealogical continuity of populations. Here, we discuss how genetic information from ancient and historical specimens can play a central role in preserving biodiversity and highlight specific conservation policies that could incorporate such data to help countries meet their CBD obligations.


Subject(s)
Biodiversity , Conservation of Natural Resources , DNA , Policy
7.
Proc Biol Sci ; 288(1957): 20211252, 2021 08 25.
Article in English | MEDLINE | ID: mdl-34428961

ABSTRACT

Ancient DNA (aDNA) has played a major role in our understanding of the past. Important advances in the sequencing and analysis of aDNA from a range of organisms have enabled a detailed understanding of processes such as past demography, introgression, domestication, adaptation and speciation. However, to date and with the notable exception of microbiomes and sediments, most aDNA studies have focused on single taxa or taxonomic groups, making the study of changes at the community level challenging. This is rather surprising because current sequencing and analytical approaches allow us to obtain and analyse aDNA from multiple source materials. When combined, these data can enable the simultaneous study of multiple taxa through space and time, and could thus provide a more comprehensive understanding of ecosystem-wide changes. It is therefore timely to develop an integrative approach to aDNA studies by combining data from multiple taxa and substrates. In this review, we discuss the various applications, associated challenges and future prospects of such an approach.


Subject(s)
DNA, Ancient , Ecosystem , Fossils , Geologic Sediments
9.
Nat Commun ; 12(1): 2393, 2021 04 26.
Article in English | MEDLINE | ID: mdl-33896938

ABSTRACT

Small populations are often exposed to high inbreeding and mutational load that can increase the risk of extinction. The Sumatran rhinoceros was widespread in Southeast Asia, but is now restricted to small and isolated populations on Sumatra and Borneo, and most likely extinct on the Malay Peninsula. Here, we analyse 5 historical and 16 modern genomes from these populations to investigate the genomic consequences of the recent decline, such as increased inbreeding and mutational load. We find that the Malay Peninsula population experienced increased inbreeding shortly before extirpation, which possibly was accompanied by purging. The populations on Sumatra and Borneo instead show low inbreeding, but high mutational load. The currently small population sizes may thus in the near future lead to inbreeding depression. Moreover, we find little evidence for differences in local adaptation among populations, suggesting that future inbreeding depression could potentially be mitigated by assisted gene flow among populations.


Subject(s)
Conservation of Natural Resources , Endangered Species , Perissodactyla/genetics , Animals , Borneo , Endangered Species/history , Female , Gene Flow , Genetic Variation , Genome , History, 21st Century , History, Ancient , Inbreeding , Indonesia , Loss of Function Mutation , Male , Mutation , Population Density , Selection, Genetic
10.
Nature ; 591(7849): 265-269, 2021 03.
Article in English | MEDLINE | ID: mdl-33597750

ABSTRACT

Temporal genomic data hold great potential for studying evolutionary processes such as speciation. However, sampling across speciation events would, in many cases, require genomic time series that stretch well back into the Early Pleistocene subepoch. Although theoretical models suggest that DNA should survive on this timescale1, the oldest genomic data recovered so far are from a horse specimen dated to 780-560 thousand years ago2. Here we report the recovery of genome-wide data from three mammoth specimens dating to the Early and Middle Pleistocene subepochs, two of which are more than one million years old. We find that two distinct mammoth lineages were present in eastern Siberia during the Early Pleistocene. One of these lineages gave rise to the woolly mammoth and the other represents a previously unrecognized lineage that was ancestral to the first mammoths to colonize North America. Our analyses reveal that the Columbian mammoth of North America traces its ancestry to a Middle Pleistocene hybridization between these two lineages, with roughly equal admixture proportions. Finally, we show that the majority of protein-coding changes associated with cold adaptation in woolly mammoths were already present one million years ago. These findings highlight the potential of deep-time palaeogenomics to expand our understanding of speciation and long-term adaptive evolution.


Subject(s)
DNA, Ancient/analysis , Evolution, Molecular , Genome, Mitochondrial/genetics , Genomics , Mammoths/genetics , Phylogeny , Acclimatization/genetics , Alleles , Animals , Bayes Theorem , DNA, Ancient/isolation & purification , Elephants/genetics , Europe , Female , Fossils , Genetic Variation/genetics , Markov Chains , Molar , North America , Radiometric Dating , Siberia , Time Factors
11.
Cell Genom ; 1(1): 100002, 2021 Oct 13.
Article in English | MEDLINE | ID: mdl-36777713

ABSTRACT

The kakapo is a flightless parrot endemic to New Zealand. Once common in the archipelago, only 201 individuals remain today, most of them descending from an isolated island population. We report the first genome-wide analyses of the species, including a high-quality genome assembly for kakapo, one of the first chromosome-level reference genomes sequenced by the Vertebrate Genomes Project (VGP). We also sequenced and analyzed 35 modern genomes from the sole surviving island population and 14 genomes from the extinct mainland population. While theory suggests that such a small population is likely to have accumulated deleterious mutations through genetic drift, our analyses on the impact of the long-term small population size in kakapo indicate that present-day island kakapo have a reduced number of harmful mutations compared to mainland individuals. We hypothesize that this reduced mutational load is due to the island population having been subjected to a combination of genetic drift and purging of deleterious mutations, through increased inbreeding and purifying selection, since its isolation from the mainland ∼10,000 years ago. Our results provide evidence that small populations can survive even when isolated for hundreds of generations. This work provides key insights into kakapo breeding and recovery and more generally into the application of genetic tools in conservation efforts for endangered species.

12.
BMC Genomics ; 21(1): 854, 2020 Dec 02.
Article in English | MEDLINE | ID: mdl-33267779

ABSTRACT

BACKGROUND: Numerous megafauna species from northern latitudes went extinct during the Pleistocene/Holocene transition as a result of climate-induced habitat changes. However, several ungulate species managed to successfully track their habitats during this period to eventually flourish and recolonise the holarctic regions. So far, the genomic impacts of these climate fluctuations on ungulates from high latitudes have been little explored. Here, we assemble a de-novo genome for the European moose (Alces alces) and analyse it together with re-sequenced nuclear genomes and ancient and modern mitogenomes from across the moose range in Eurasia and North America. RESULTS: We found that moose demographic history was greatly influenced by glacial cycles, with demographic responses to the Pleistocene/Holocene transition similar to other temperate ungulates. Our results further support that modern moose lineages trace their origin back to populations that inhabited distinct glacial refugia during the Last Glacial Maximum (LGM). Finally, we found that present day moose in Europe and North America show low to moderate inbreeding levels resulting from post-glacial bottlenecks and founder effects, but no evidence for recent inbreeding resulting from human-induced population declines. CONCLUSIONS: Taken together, our results highlight the dynamic recent evolutionary history of the moose and provide an important resource for further genomic studies.


Subject(s)
Deer , Genetic Variation , Animals , DNA, Mitochondrial/genetics , Deer/genetics , Demography , Europe , North America , Phylogeny , Sequence Analysis, DNA
13.
BMC Genomics ; 21(1): 844, 2020 Nov 30.
Article in English | MEDLINE | ID: mdl-33256612

ABSTRACT

BACKGROUND: After over a decade of developments in field collection, laboratory methods and advances in high-throughput sequencing, contamination remains a key issue in ancient DNA research. Currently, human and microbial contaminant DNA still impose challenges on cost-effective sequencing and accurate interpretation of ancient DNA data. RESULTS: Here we investigate whether human contaminating DNA can be found in ancient faunal sequencing datasets. We identify variable levels of human contamination, which persists even after the sequence reads have been mapped to the faunal reference genomes. This contamination has the potential to affect a range of downstream analyses. CONCLUSIONS: We propose a fast and simple method, based on competitive mapping, which allows identifying and removing human contamination from ancient faunal DNA datasets with limited losses of true ancient data. This method could represent an important tool for the ancient DNA field.


Subject(s)
DNA Contamination , Genome , DNA, Ancient , Genomics , High-Throughput Nucleotide Sequencing , Humans , Sequence Analysis, DNA
14.
Sci Rep ; 10(1): 18347, 2020 10 27.
Article in English | MEDLINE | ID: mdl-33110153

ABSTRACT

Interspecific introgression is considered a potential threat to endangered taxa. One example where this has had a major impact on conservation policy is the lesser white-fronted goose (LWfG). After a dramatic decline in Sweden, captive breeding birds were released between 1981-1999 with the aim to reinforce the population. However, the detection of greater white-fronted goose (GWfG) mitochondrial DNA in the LWfG breeding stock led to the release program being dismantled, even though the presence of GWfG introgression in the actual wild Swedish LWfG population was never documented. To examine this, we sequenced the complete genomes of 21 LWfG birds from the Swedish, Russian and Norwegian populations, and compared these with genomes from other goose species, including the GWfG. We found no evidence of interspecific introgression into the wild Swedish LWfG population in either nuclear genomic or mitochondrial data. Moreover, Swedish LWfG birds are genetically distinct from the Russian and Norwegian populations and display comparatively low genomic diversity and high levels of inbreeding. Our findings highlight the utility of genomic approaches in providing scientific evidence that can help improve conservation management as well as policies for breeding and reinforcement programmes.


Subject(s)
Geese/genetics , Genetic Introgression/genetics , Animals , Animals, Wild/genetics , Breeding , Conservation of Natural Resources , DNA, Mitochondrial/genetics , Female , Genetics, Population , Genome/genetics , Male , Sweden
15.
Curr Biol ; 30(19): 3871-3879.e7, 2020 10 05.
Article in English | MEDLINE | ID: mdl-32795436

ABSTRACT

Ancient DNA has significantly improved our understanding of the evolution and population history of extinct megafauna. However, few studies have used complete ancient genomes to examine species responses to climate change prior to extinction. The woolly rhinoceros (Coelodonta antiquitatis) was a cold-adapted megaherbivore widely distributed across northern Eurasia during the Late Pleistocene and became extinct approximately 14 thousand years before present (ka BP). While humans and climate change have been proposed as potential causes of extinction [1-3], knowledge is limited on how the woolly rhinoceros was impacted by human arrival and climatic fluctuations [2]. Here, we use one complete nuclear genome and 14 mitogenomes to investigate the demographic history of woolly rhinoceros leading up to its extinction. Unlike other northern megafauna, the effective population size of woolly rhinoceros likely increased at 29.7 ka BP and subsequently remained stable until close to the species' extinction. Analysis of the nuclear genome from a ∼18.5-ka-old specimen did not indicate any increased inbreeding or reduced genetic diversity, suggesting that the population size remained steady for more than 13 ka following the arrival of humans [4]. The population contraction leading to extinction of the woolly rhinoceros may have thus been sudden and mostly driven by rapid warming in the Bølling-Allerød interstadial. Furthermore, we identify woolly rhinoceros-specific adaptations to arctic climate, similar to those of the woolly mammoth. This study highlights how species respond differently to climatic fluctuations and further illustrates the potential of palaeogenomics to study the evolutionary history of extinct species.


Subject(s)
Archaeology/methods , DNA, Ancient/analysis , Perissodactyla/genetics , Animals , Climate Change , Extinction, Biological , Fossils , Genome/genetics , Genomics/methods , Population Density , Population Dynamics
16.
Cell ; 181(6): 1200-1201, 2020 06 11.
Article in English | MEDLINE | ID: mdl-32497501

ABSTRACT

The unrelenting development of ancient DNA methods now allows researchers to obtain archaeogenetic data from increasingly diverse sources. In a new study in this issue of Cell, researchers apply the latest DNA technologies to unravel the mysteries of the Dead Sea Scrolls, one of the world's most famous and influential sets of ancient parchments.


Subject(s)
DNA, Ancient , Genetic Code
17.
Evol Lett ; 4(2): 94-108, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32313686

ABSTRACT

Evolutionary processes, including selection, can be indirectly inferred based on patterns of genomic variation among contemporary populations or species. However, this often requires unrealistic assumptions of ancestral demography and selective regimes. Sequencing ancient DNA from temporally spaced samples can inform about past selection processes, as time series data allow direct quantification of population parameters collected before, during, and after genetic changes driven by selection. In this Comment and Opinion, we advocate for the inclusion of temporal sampling and the generation of paleogenomic datasets in evolutionary biology, and highlight some of the recent advances that have yet to be broadly applied by evolutionary biologists. In doing so, we consider the expected signatures of balancing, purifying, and positive selection in time series data, and detail how this can advance our understanding of the chronology and tempo of genomic change driven by selection. However, we also recognize the limitations of such data, which can suffer from postmortem damage, fragmentation, low coverage, and typically low sample size. We therefore highlight the many assumptions and considerations associated with analyzing paleogenomic data and the assumptions associated with analytical methods.

18.
Philos Trans R Soc Lond B Biol Sci ; 374(1788): 20190212, 2019 12 23.
Article in English | MEDLINE | ID: mdl-31679495

ABSTRACT

Ancient DNA provides a powerful means to investigate the timing, rate and extent of population declines caused by extrinsic factors, such as past climate change and human activities. One species probably affected by both these factors is the arctic fox, which had a large distribution during the last glaciation that subsequently contracted at the start of the Holocene. More recently, the arctic fox population in Scandinavia went through a demographic bottleneck owing to human persecution. To investigate the consequences of these processes, we generated mitogenome sequences from a temporal dataset comprising Pleistocene, historical and modern arctic fox samples. We found no evidence that Pleistocene populations in mid-latitude Europe or Russia contributed to the present-day gene pool of the Scandinavian population, suggesting that postglacial climate warming led to local population extinctions. Furthermore, during the twentieth-century bottleneck in Scandinavia, at least half of the mitogenome haplotypes were lost, consistent with a 20-fold reduction in female effective population size. In conclusion, these results suggest that the arctic fox in mainland Western Europe has lost genetic diversity as a result of both past climate change and human persecution. Consequently, it might be particularly vulnerable to the future challenges posed by climate change. This article is part of a discussion meeting issue 'The past is a foreign country: how much can the fossil record actually inform conservation?'


Subject(s)
Animal Distribution , Climate Change , Foxes/physiology , Genetic Variation , Human Activities , Animals , DNA, Ancient/analysis , Fossils , Foxes/genetics , Genome, Mitochondrial , Population Dynamics , Scandinavian and Nordic Countries
19.
Curr Biol ; 29(10): 1701-1711.e16, 2019 05 20.
Article in English | MEDLINE | ID: mdl-31080083

ABSTRACT

In this study, we compare the genetic ancestry of individuals from two as yet genetically unstudied cultural traditions in Estonia in the context of available modern and ancient datasets: 15 from the Late Bronze Age stone-cist graves (1200-400 BC) (EstBA) and 6 from the Pre-Roman Iron Age tarand cemeteries (800/500 BC-50 AD) (EstIA). We also included 5 Pre-Roman to Roman Iron Age Ingrian (500 BC-450 AD) (IngIA) and 7 Middle Age Estonian (1200-1600 AD) (EstMA) individuals to build a dataset for studying the demographic history of the northern parts of the Eastern Baltic from the earliest layer of Mesolithic to modern times. Our findings are consistent with EstBA receiving gene flow from regions with strong Western hunter-gatherer (WHG) affinities and EstIA from populations related to modern Siberians. The latter inference is in accordance with Y chromosome (chrY) distributions in present day populations of the Eastern Baltic, as well as patterns of autosomal variation in the majority of the westernmost Uralic speakers [1-5]. This ancestry reached the coasts of the Baltic Sea no later than the mid-first millennium BC; i.e., in the same time window as the diversification of west Uralic (Finnic) languages [6]. Furthermore, phenotypic traits often associated with modern Northern Europeans, like light eyes, hair, and skin, as well as lactose tolerance, can be traced back to the Bronze Age in the Eastern Baltic. VIDEO ABSTRACT.


Subject(s)
DNA, Ancient/analysis , Gene Flow , Human Migration , Phenotype , Archaeology , Estonia , Female , History, Ancient , History, Medieval , Humans , Male
20.
Curr Biol ; 29(1): 165-170.e6, 2019 01 07.
Article in English | MEDLINE | ID: mdl-30595519

ABSTRACT

Many endangered species have experienced severe population declines within the last centuries [1, 2]. However, despite concerns about negative fitness effects resulting from increased genetic drift and inbreeding, there is a lack of empirical data on genomic changes in conjunction with such declines [3-7]. Here, we use whole genomes recovered from century-old historical museum specimens to quantify the genomic consequences of small population size in the critically endangered Grauer's and endangered mountain gorillas. We find a reduction of genetic diversity and increase in inbreeding and genetic load in the Grauer's gorilla, which experienced severe population declines in recent decades. In contrast, the small but relatively stable mountain gorilla population has experienced little genomic change during the last century. These results suggest that species histories as well as the rate of demographic change may influence how population declines affect genome diversity.


Subject(s)
Genetic Variation , Genome , Gorilla gorilla/genetics , Inbreeding , Animals , Endangered Species , Population Density , Population Dynamics
SELECTION OF CITATIONS
SEARCH DETAIL