Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Gut ; 73(4): 601-612, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38176897

ABSTRACT

OBJECTIVE: Mucosal T cells play a major role in inflammatory bowel disease (IBD). However, their immunometabolism during intestinal inflammation is poorly understood. Due to its impact on cellular metabolism and proinflammatory immune cell function, we here focus on the enzyme ATP citrate lyase (ACLY) in mucosal T cell immunometabolism and its relevance for IBD. DESIGN: ACLY expression and its immunometabolic impact on colitogenic T cell function were analysed in mucosal T cells from patients with IBD and in two experimental colitis models. RESULTS: ACLY was markedly expressed in colon tissue under steady-state conditions but was significantly downregulated in lamina propria mononuclear cells in experimental dextran sodium sulfate-induced colitis and in CD4+ and to a lesser extent in CD8+ T cells infiltrating the inflamed gut in patients with IBD. ACLY-deficient CD4+ T cells showed an impaired capacity to induce intestinal inflammation in a transfer colitis model as compared with wild-type T cells. Assessment of T cell immunometabolism revealed that ACLY deficiency dampened the production of IBD-relevant cytokines and impaired glycolytic ATP production but enriched metabolites involved in the biosynthesis of phospholipids and phosphatidylcholine. Interestingly, the short-chain fatty acid butyrate was identified as a potent suppressor of ACLY expression in T cells, while IL-36α and resolvin E1 induced ACLY levels. In a translational approach, in vivo administration of the butyrate prodrug tributyrin downregulated mucosal infiltration of ACLYhigh CD4+ T cells and ameliorated chronic colitis. CONCLUSION: ACLY controls mucosal T cell immunometabolism and experimental colitis. Therapeutic modulation of ACLY expression in T cells emerges as a novel strategy to promote the resolution of intestinal inflammation.


Subject(s)
Colitis , Inflammatory Bowel Diseases , Intraepithelial Lymphocytes , Humans , Animals , Intraepithelial Lymphocytes/metabolism , ATP Citrate (pro-S)-Lyase/metabolism , CD8-Positive T-Lymphocytes/metabolism , Colitis/metabolism , Inflammation/metabolism , Butyrates , Intestinal Mucosa/metabolism , Dextran Sulfate , Disease Models, Animal
2.
Front Immunol ; 11: 691, 2020.
Article in English | MEDLINE | ID: mdl-32457736

ABSTRACT

Cystic fibrosis patients suffer from a progressive, often fatal lung disease, which is based on a complex interplay between chronic infections, locally accumulating immune cells and pulmonary tissue remodeling. Although group-2 innate lymphoid cells (ILC2s) act as crucial initiators of lung inflammation, our understanding of their involvement in the pathogenesis of cystic fibrosis remains incomplete. Here we report a marked decrease of circulating CCR6+ ILC2s in the blood of cystic fibrosis patients, which significantly correlated with high disease severity and advanced pulmonary failure, strongly implicating increased ILC2 homing from the peripheral blood to the chronically inflamed lung tissue in cystic fibrosis patients. On a functional level, the CCR6 ligand CCL20 was identified as potent promoter of lung-directed ILC2 migration upon inflammatory conditions in vitro and in vivo using a new humanized mouse model with light-sheet fluorescence microscopic visualization of lung-accumulated human ILC2s. In the lung, blood-derived human ILC2s were able to augment local eosinophil and neutrophil accumulation and induced a marked upregulation of pulmonary type-VI collagen expression. Studies in primary human lung fibroblasts additionally revealed ILC2-derived IL-4 and IL-13 as important mediators of this type-VI collagen-inducing effect. Taken together, the here acquired results suggest that pathologically increased CCL20 levels in cystic fibrosis airways induce CCR6-mediated lung homing of circulating human ILC2s. Subsequent ILC2 activation then triggers local production of type-VI collagen and might thereby drive extracellular matrix remodeling potentially influencing pulmonary tissue destruction in cystic fibrosis patients. Thus, modulating the lung homing capacity of circulating ILC2s and their local effector functions opens new therapeutic avenues for cystic fibrosis treatment.


Subject(s)
Cystic Fibrosis/blood , Immunity, Innate , Lung/immunology , Lymphocyte Activation , Lymphocytes/immunology , Receptors, CCR6/metabolism , Respiratory Insufficiency/immunology , Adolescent , Adult , Aged , Animals , Arthritis, Rheumatoid/blood , Cell Movement/immunology , Chemokine CCL20/metabolism , Disease Models, Animal , Female , Humans , Inflammatory Bowel Diseases/blood , Male , Mice , Mice, Inbred C57BL , Middle Aged , Young Adult
3.
J Crohns Colitis ; 10(10): 1132-43, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27112707

ABSTRACT

BACKGROUND AND AIMS: The clinical use of azathioprine and 6-mercaptopurine is limited by their delayed onset of action and potential side effects such as myelosuppression and hepatotoxicity. As these drugs specifically target the Vav1/Rac1 signalling pathway in T lamina propria lymphocytes via their metabolite 6-thio-GTP, we studied expression and optimised suppression of this pathway in inflammatory bowel diseases [IBD]. METHODS: Rac1 and Vav1 expressions were analysed in mucosal immune cells in IBD patients. Targeted molecular modelling of the 6-thio-GTP molecule was performed to optimise Rac1 blockade; 44 modified designer thiopurine-analogues were tested for apoptosis induction, potential toxicity, and immunosuppression. Activation of the Vav1/Rac1 pathway in lymphocytes was studied in IBD patients and in lamina propria immune cells in the presence or absence of thiopurine-analogues. RESULTS: Several thiopurine-analogues induced significantly higher T cell apoptosis than 6-mercaptopurine. We identified a compound, denoted B-0N, based on its capacity to mediate earlier and stronger induction of T cell apoptosis than 6-mercaptopurine. B-0N-treatment resulted in accelerated inhibition of Rac1 activity in primary peripheral blood T cells as well as in intestinal lamina propria immune cells. Compared with 6-thio-GTP and 6-mercaptopurine, B-0N-treatment was associated with decreased myelo- and hepatotoxicity. CONCLUSIONS: The Vav1/Rac1 pathway is activated in mucosal immune cells in IBD. The designer thiopurine-analogue B-0N induces immunosuppression more potently than 6-mercaptopurine.


Subject(s)
Designer Drugs/pharmacology , Immunosuppressive Agents/pharmacology , Inflammatory Bowel Diseases/drug therapy , Intestinal Mucosa/drug effects , Mercaptopurine/analogs & derivatives , Mercaptopurine/pharmacology , Apoptosis/drug effects , Biomarkers/metabolism , Case-Control Studies , Designer Drugs/therapeutic use , Drug Design , Humans , Immunosuppressive Agents/therapeutic use , Inflammatory Bowel Diseases/immunology , Inflammatory Bowel Diseases/metabolism , Intestinal Mucosa/immunology , Intestinal Mucosa/metabolism , Mercaptopurine/therapeutic use , Proto-Oncogene Proteins c-vav/metabolism , Signal Transduction/drug effects , T-Lymphocytes/metabolism , rac1 GTP-Binding Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...