Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
2.
Cell Death Differ ; 29(11): 2218-2232, 2022 11.
Article in English | MEDLINE | ID: mdl-35505004

ABSTRACT

The bacterium Helicobacter pylori induces gastric inflammation and predisposes to cancer. H. pylori-infected epithelial cells secrete cytokines and chemokines and undergo DNA-damage. We show that the host cell's mitochondrial apoptosis system contributes to cytokine secretion and DNA-damage in the absence of cell death. H. pylori induced secretion of cytokines/chemokines from epithelial cells, dependent on the mitochondrial apoptosis machinery. A signalling step was identified in the release of mitochondrial Smac/DIABLO, which was required for alternative NF-κB-activation and contributed to chemokine secretion. The bacterial cag-pathogenicity island and bacterial muropeptide triggered mitochondrial host cell signals through the pattern recognition receptor NOD1. H. pylori-induced DNA-damage depended on mitochondrial apoptosis signals and the caspase-activated DNAse. In biopsies from H. pylori-positive patients, we observed a correlation of Smac-levels and inflammation. Non-apoptotic cells in these samples showed evidence of caspase-3-activation, correlating with phosphorylation of the DNA-damage response kinase ATM. Thus, H. pylori activates the mitochondrial apoptosis pathway to a sub-lethal level. During infection, Smac has a cytosolic, pro-inflammatory role in the absence of apoptosis. Further, DNA-damage through sub-lethal mitochondrial signals is likely to contribute to mutagenesis and cancer development.


Subject(s)
Helicobacter Infections , Helicobacter pylori , Humans , NF-kappa B/metabolism , Helicobacter Infections/metabolism , Helicobacter Infections/pathology , Mitochondria/metabolism , Epithelial Cells/metabolism , Chemokines/metabolism , DNA/metabolism , Inflammation/metabolism , Gastric Mucosa/metabolism , Gastric Mucosa/microbiology , Gastric Mucosa/pathology
3.
EMBO J ; 38(11)2019 06 03.
Article in English | MEDLINE | ID: mdl-30979778

ABSTRACT

Apoptosis is a frequent form of programmed cell death, but the apoptotic signaling pathway can also be engaged at a low level, in the absence of cell death. We here report that such sub-lethal engagement of mitochondrial apoptosis signaling causes the secretion of cytokines from human epithelial cells in a process controlled by the Bcl-2 family of proteins. We further show that sub-lethal signaling of the mitochondrial apoptosis pathway is initiated by infections with all tested viral, bacterial, and protozoan pathogens and causes damage to the genomic DNA. Epithelial cells infected with these pathogens secreted cytokines, and this cytokine secretion upon microbial infection was substantially reduced if mitochondrial sub-lethal apoptosis signaling was blocked. In the absence of mitochondrial pro-apoptotic signaling, the ability of epithelial cells to restrict intracellular bacterial growth was impaired. Triggering of the mitochondrial apoptosis apparatus thus not only causes apoptosis but also has an independent role in immune defense.


Subject(s)
Apoptosis/physiology , Immunity/physiology , Mitochondria/physiology , Animals , Cell Death/immunology , Cells, Cultured , Epithelial Cells/physiology , HCT116 Cells , HEK293 Cells , HeLa Cells , Humans , Mice , Proto-Oncogene Proteins c-bcl-2/physiology , Serine Endopeptidases/physiology , Signal Transduction/physiology , bcl-2 Homologous Antagonist-Killer Protein/physiology , bcl-2-Associated X Protein/physiology
SELECTION OF CITATIONS
SEARCH DETAIL