Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Nat Ecol Evol ; 8(3): 430-441, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38278985

ABSTRACT

Humans impact terrestrial, marine and freshwater ecosystems, yet many broad-scale studies have found no systematic, negative biodiversity changes (for example, decreasing abundance or taxon richness). Here we show that mixed biodiversity responses may arise because community metrics show variable responses to anthropogenic impacts across broad spatial scales. We first quantified temporal trends in anthropogenic impacts for 1,365 riverine invertebrate communities from 23 European countries, based on similarity to least-impacted reference communities. Reference comparisons provide necessary, but often missing, baselines for evaluating whether communities are negatively impacted or have improved (less or more similar, respectively). We then determined whether changing impacts were consistently reflected in metrics of community abundance, taxon richness, evenness and composition. Invertebrate communities improved, that is, became more similar to reference conditions, from 1992 until the 2010s, after which improvements plateaued. Improvements were generally reflected by higher taxon richness, providing evidence that certain community metrics can broadly indicate anthropogenic impacts. However, richness responses were highly variable among sites, and we found no consistent responses in community abundance, evenness or composition. These findings suggest that, without sufficient data and careful metric selection, many common community metrics cannot reliably reflect anthropogenic impacts, helping explain the prevalence of mixed biodiversity trends.


Subject(s)
Biodiversity , Ecosystem , Animals , Humans , Invertebrates , Rivers , Europe
2.
Nature ; 620(7974): 582-588, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37558875

ABSTRACT

Owing to a long history of anthropogenic pressures, freshwater ecosystems are among the most vulnerable to biodiversity loss1. Mitigation measures, including wastewater treatment and hydromorphological restoration, have aimed to improve environmental quality and foster the recovery of freshwater biodiversity2. Here, using 1,816 time series of freshwater invertebrate communities collected across 22 European countries between 1968 and 2020, we quantified temporal trends in taxonomic and functional diversity and their responses to environmental pressures and gradients. We observed overall increases in taxon richness (0.73% per year), functional richness (2.4% per year) and abundance (1.17% per year). However, these increases primarily occurred before the 2010s, and have since plateaued. Freshwater communities downstream of dams, urban areas and cropland were less likely to experience recovery. Communities at sites with faster rates of warming had fewer gains in taxon richness, functional richness and abundance. Although biodiversity gains in the 1990s and 2000s probably reflect the effectiveness of water-quality improvements and restoration projects, the decelerating trajectory in the 2010s suggests that the current measures offer diminishing returns. Given new and persistent pressures on freshwater ecosystems, including emerging pollutants, climate change and the spread of invasive species, we call for additional mitigation to revive the recovery of freshwater biodiversity.


Subject(s)
Biodiversity , Conservation of Water Resources , Environmental Monitoring , Fresh Water , Invertebrates , Animals , Introduced Species/trends , Invertebrates/classification , Invertebrates/physiology , Europe , Human Activities , Conservation of Water Resources/statistics & numerical data , Conservation of Water Resources/trends , Hydrobiology , Time Factors , Crop Production , Urbanization , Global Warming , Water Pollutants/analysis
3.
Sci Total Environ ; 903: 166254, 2023 Dec 10.
Article in English | MEDLINE | ID: mdl-37574055

ABSTRACT

Temporary rivers are widespread in the Mediterranean region and impose a challenge for the implementation of the Water Framework Directive (WFD) and other environmental regulations. Surprisingly, an overarching analysis of their ecological status and the stressors affecting them is yet missing. We compiled data on the ecological status of 1504 temporary rivers in seven European Mediterranean region countries and related their ecological status (1) to publicly available data on pressures from the European WISE-WFD dataset, and (2) to seven more specific stressors modelled on a sub-catchment scale. More than 50 % of the temporary water bodies in the Mediterranean countries reached good or even high ecological status. In general, status classes derived from phytobenthos and macrophyte assessment were higher than those derived from the assessment of benthic invertebrates or fish. Of the more generally defined pressures reported to the WISE-WFD database, the most relevant for temporary rivers were 'diffuse agricultural' and 'point urban waste water'. Of the modelled more specific stressors, agricultural land use best explained overall ecological status, followed by total nitrogen load, and urban land use, while toxic substances, total phosphorus load and hydrological stressors were less relevant. However, stressors differed in relevance, with total nitrogen being most important for macrophytes, and agricultural land use for phytobenthos, benthic invertebrates and fish. For macrophytes, ecological quality increased with stressor intensity. The results underline the overarching effect of land use intensity for the ecological status of temporary water bodies. However, assessment results do not sufficiently reflect hydrological stress, most likely as the biological indicators used to evaluate these systems were designed for perennial water bodies and thus mainly target land use and nutrient impacts. We conclude that biomonitoring systems need to be updated or newly developed to better account for the specific situation of temporary water bodies.

4.
Ecol Evol ; 13(2): e9800, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36861027

ABSTRACT

Despite significant population declines and targeted European Union regulations aimed at Anguilla anguilla conservation, little attention has been given to their status at their easternmost range. This study applies wide-scale integrated monitoring to uncover the present-day eel distribution in Cyprus' inland freshwaters. These are subject to increasing pressures from water supply requirements and dam construction, as seen throughout the Mediterranean. We applied environmental DNA metabarcoding of water samples to determine A. anguilla distribution in key freshwater catchments. In addition, we present this alongside 10 years of electrofishing/netting data. Refuge traps were also deployed to establish the timing of glass eel recruitment. These outputs are used together, alongside knowledge of the overall fish community and barriers to connectivity, to provide eel conservation and policy insights. This study confirm the presence of A. anguilla in Cyprus' inland freshwaters, with recruitment occurring in March. Eel distribution is restricted to lower elevation areas, and is negatively associated with distance from coast and barriers to connectivity. Many barriers to connectivity are identified, though eels were detected in two reservoirs upstream of dams. The overall fish community varies between freshwater habitat types. Eels are much more widespread in Cyprus than previously thought, yet mostly restricted to lowland intermittent systems. These findings make a case to reconsider the requirement for eel management plans. Environmental DNA-based data collected in 2020 indicate that "present-day" eel distribution is representative of 10-year survey trends. Suggesting that inland freshwaters may act as an unrealized refuge at A. anguilla's easternmost range. Conservation efforts in Mediterranean freshwaters should focus on improving connectivity, therefore enabling eels to access inland perennial refugia. Thus, mitigating the impact of climate change and the growing number of fragmented artificially intermittent river systems.

5.
Chemosphere ; 272: 129814, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33582508

ABSTRACT

Human activities are the leading cause of environmental impairments. Appropriate biomonitoring of ecosystems is needed to assess these activities effectively. In freshwater ecosystems, periphytic and epilithic biofilms have diatom assemblages. These assemblages respond rapidly to environmental changes, making diatoms valuable bioindicators. For this reason, freshwater biomonitoring programs are currently using diatoms (e.g., Water Framework Directive). In the past ten years, DNA metabarcoding coupled with next-generation sequencing and bioinformatics represents a complementary approach for diatom biomonitoring. In this study, this approach is used for the first time in Cyprus by considering the association of environmental and anthropogenic pressures to diatom assemblages. Statistical analysis was then applied to identify the environmental (i.e., river types, geo-morphological) and anthropogenic (i.e., physicochemical, human land-use pressures) variables' role in the observed diatom diversity. Results indicate differences in diatom assemblages between intermittent and perennial rivers. Achnanthidium minutissimum was more abundant in intermittent rivers; whereas Amphora pediculus and Planothidium caputium in perennial ones. Additionally, we could demonstrate the correlation between nutrients (e.g., nitrogen, phosphorus), stations' local characteristics (e.g., elevation), and land use activities on the observed differences in diatom diversity. Finally, we conclude that multi-stressors and anthropogenic pressures together as multiple stressors have a significant statistical relationship to the observed diatom diversity and play a pivotal role in determining Cyprus' rivers' ecological status.


Subject(s)
Diatoms , Rivers , Cyprus , DNA Barcoding, Taxonomic , Diatoms/genetics , Ecosystem , Environmental Monitoring , Humans
6.
Sci Total Environ ; 708: 134714, 2020 Mar 15.
Article in English | MEDLINE | ID: mdl-31787293

ABSTRACT

In this study, a strontium isotope baseline for Cyprus is presented. The aim of the study was two-fold; first to provide an environmental multi-proxy-based baseline (water/plants/soil leachates) suitable for archaeological provenance and mobility studies, food source authentication, and forensic investigations; and second, to contribute to the debate around which proxy (or combination of proxies) might be most suitable to define bioavailable fractions of strontium in geologically complex areas also exposed to sea-spray and other Sr-bearing aerosols. Lowest bioavailable strontium isotope signatures range is found within terranes dominated by ophiolites, where 87Sr/86Sr ratios range from 0.7055 to 0.7081, however, results reveal a high degree of variability in bioavailable 87Sr/86Sr ratios, both spatially, along depth profiles and amongst the different proxies. A narrower range of bioavailable Sr isotope signatures is observed within the Circum Troodos Sedimentary Successions (C.T.S.S.), both in spatial distribution and between different proxies. Observed range is 87Sr/86Sr = 0.7079 to 0.7089 in areas dominated by pre-Quaternary C.T.S.S., and 87Sr/86Sr ratios = 0.7076 to 0.7086 in areas covered by Quaternary C.T.S.S., revealing the lithologies to be very homogenous with respect to bioavailable strontium ratios. Intra-site variations in three archaeological sites (multiple samples from each site from within a 500 m radius) within the pre-Quaternary and Quaternary C.T.S.S. are smaller than inter-site variations, suggesting that tracing studies inferred from baselines sampled within a limited spatial area could lead to erroneous conclusions regarding provenance. The study points to the necessity for conducting multi-proxy, spatially extensive sampling to adequately characterize complex geological areas, if these should serve as reliable reference areas in provenance studies.


Subject(s)
Groundwater , Soil , Cyprus , Strontium , Strontium Isotopes , Water
7.
Sci Total Environ ; 577: 1-18, 2017 Jan 15.
Article in English | MEDLINE | ID: mdl-27810301

ABSTRACT

Non-perennial rivers and streams (NPRS) cover >50% of the global river network. They are particularly predominant in Mediterranean Europe as a result of dry climate conditions, climate change and land use development. Historically, both scientists and policy makers underestimated the importance of NRPS for nature and humans alike, mainly because they have been considered as systems of low ecological and economic value. During the past decades, diminishing water resources have increased the spatial and temporal extent of artificial NPRS as well as their exposure to multiple stressors, which threatening their ecological integrity, biodiversity and ecosystem services. In this paper, we provide a comprehensive overview of the structural and functional characteristics of NPRS in the European Mediterranean, and discuss gaps and problems in their management, concerning their typology, ecological assessment, legislative and policy protection, and incorporation in River Basin Management Plans. Because NPRS comprise highly unstable ecosystems, with strong and often unpredictable temporal and spatial variability - at least as far as it is possible to assess - we outline the future research needs required to better understand, manage and conserve them as highly valuable and sensitive ecosystems. Efficient collaborative activities among multidisciplinary research groups aiming to create innovative knowledge, water managers and policy makers are urgently needed in order to establish an appropriate methodological and legislative background. The incorporation of NPRS in EU-Med River Basin Management Plans in combination with the application of ecological flows is a first step towards enhancing NPRS management and conservation in order to effectively safeguard these highly valuable albeit threatened ecosystems.

8.
Sci Total Environ ; 538: 169-79, 2015 Dec 15.
Article in English | MEDLINE | ID: mdl-26298850

ABSTRACT

The status of European legislation regarding inland water quality after the enactment of the Water Framework Directive (WFD) originated scientific effort to develop reliable methods, primarily based on biological parameters. An important aspect of the process was to ensure that quality assessment was comparable between the different Member States. The Intercalibration process (IC), required in the WFD ensures the unbiased application of the norm. The presented results were developed in the context of the 2nd IC phase. An overview of the reservoir type definition of the Lake Mediterranean Geographical Intercalibration Group, where four types were considered divided by both alkalinity and climate, together with the results for selection of Maximum Ecological Potential sites (MEP) are presented. MEP reservoirs were selected based on pressure and biological variables. Three phytoplankton-based assessment methods were intercalibrated using data from Mediterranean countries. The Mediterranean Assessment System for Reservoirs Phytoplankton (Spain), the New Mediterranean Assessment System for Reservoirs Phytoplankton (Portugal and Cyprus) and the New Italian Method (Italy) were applied. These three methods were compared through option 3 of the Intercalibration Guide. The similarity of the assessments was quantified, and the Good/Moderate (GM) boundaries assessed. All three methods stood as comparable at the GM boundary except for the MASRP in siliceous wet reservoirs, which was slightly stricter. Finally, the main taxonomic groups represented in the phytoplankton community at MEP conditions were identified, as well as their main changes with an increasing trophic status. MEP sites are dominated by chrysophytes in siliceous wet reservoirs and by the diatoms Cyclotella and Achnanthes in calcareous ones. Cyanobacteria take over the community in both calcareous and siliceous wet reservoirs as eutrophication increases. In summary, the relevance and reliability of the quality assessment methods compared were confirmed both from an ecological perspective and a health risk management point of view.


Subject(s)
Environmental Monitoring/methods , Phytoplankton/growth & development , Water Pollution/statistics & numerical data , Eutrophication , Lakes , Mediterranean Region , Reproducibility of Results , Water Pollution/analysis
9.
Water Sci Technol ; 69(4): 847-54, 2014.
Article in English | MEDLINE | ID: mdl-24569286

ABSTRACT

The water quality status of the Kouris river in Cyprus was examined in order to fulfil the requirements for ecological quality as defined by the Water Framework Directive-2000/60/EC. Nitrate concentration (mean value) was increased in the Limnatis (2.8 mg L(-1)) tributary in comparison with the Kryos (2.1 mg L(-1)) and Kouris (1.0 mg L(-1)) tributaries depicting the influence of anthropogenic activities. The total maximum daily nutrients loads (TMDLs) based on the flow duration curves approach, showed that nutrients loads exceeded threshold values (33.3-75.6% in all hydrologic condition classes in the Kouris tributary, and 65-78% in the Limnatis tributary) especially under low flow conditions. The TMDL graph is intended to guide the temporal schedule for chemical sampling in all hydrologic classes. Kouris reservoir is an oligotrophic system, strongly influenced by the river's flash-flood character but also by the implemented management practices. Kouris river outflow, which was reduced to one-tenth in the post dam period altered the wetland hydrologic network and contributed to the decrease of aquifer thickness. Continuous evaluation and update of the River Basin Management Plans will be the basis for the sustainable development of the Kouris basin.


Subject(s)
Ecosystem , Rivers , Water Supply , Cyprus , Environmental Monitoring/methods , Time Factors , Water Movements , Water Pollution/prevention & control
10.
Sci Total Environ ; 476-477: 768-76, 2014 Apr 01.
Article in English | MEDLINE | ID: mdl-24342490

ABSTRACT

The European Water Framework Directive establishes a framework for the protection of water resources. However, common water management tools demand common understanding of assessment methods, so quality goals are equally met. Intercalibration of methods ensures the comparability of biological elements across similar geographical areas. Many aspects can influence the outcome of intercalibration: data sampling, treatment methods, taxonomic reliability of databases, choice of metrics for ecological quality status classification, and criteria for selecting reference sites. This study describes the potentials and constraints of the intercalibration of indices using diatoms for assessment of Mediterranean rivers. Harmonisation of diatom taxonomy and nomenclature was based on a previous ring test which took place at the European level. Four diatom indices (Indice de Polluosensibilité Spécifique-IPS, Indice Biologique Diatomées-IBD 2007, Intercalibration Common Metric Italy-ICMi and Slovenian Ecological Status assessment system) were intercalibrated using data from six European Mediterranean countries (Cyprus, France, Italy, Portugal, Slovenia and Spain). Boundaries between High/Good and Good/Moderate quality classes were harmonised by means of the Intercalibration Common Metric (ICM). Comparability between countries was assured through boundary bias and class agreement. The national boundaries were adjusted when they deviated more than a quarter of a class equivalent (0.25) from the global mean. All national methods correlated well with the ICM, which was sensitive to water quality (negatively correlated to nutrients). Achnanthidium minutissimum sensu lato was the most discriminative species of Good ecological status class. Planothidium frequentissimum, Gomphonema parvulum and Nitzschia palea were the most contributive to Moderate ecological status class. Some taxa were discriminative for both Good and Moderate ecological status classes due to low indication and ecological discriminative power but also due to differences in taxonomy between countries. This intercalibration exercise allowed establishment of common water quality goals across Mediterranean Europe, which is substantiated with the ICM.


Subject(s)
Diatoms/classification , Environmental Monitoring/methods , Rivers/chemistry , Diatoms/growth & development , Mediterranean Region , Water Pollution/analysis , Water Pollution/statistics & numerical data , Water Quality/standards
SELECTION OF CITATIONS
SEARCH DETAIL
...