Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Biomater Sci Eng ; 10(5): 2956-2966, 2024 05 13.
Article in English | MEDLINE | ID: mdl-38593061

ABSTRACT

Bacteria experience substantial physical forces in their natural environment, including forces caused by osmotic pressure, growth in constrained spaces, and fluid shear. The cell envelope is the primary load-carrying structure of bacteria, but the mechanical properties of the cell envelope are poorly understood; reports of Young's modulus of the cell envelope of Escherichia coli range from 2 to 18 MPa. We developed a microfluidic system to apply mechanical loads to hundreds of bacteria at once and demonstrated the utility of the approach for evaluating whole-cell stiffness. Here, we extend this technique to determine Young's modulus of the cell envelope of E. coli and of the pathogens Vibrio cholerae and Staphylococcus aureus. An optimization-based inverse finite element analysis was used to determine the cell envelope Young's modulus from observed deformations. The Young's modulus values of the cell envelope were 2.06 ± 0.04 MPa for E. coli, 0.84 ± 0.02 MPa for E. coli treated with a chemical (A22) known to reduce cell stiffness, 0.12 ± 0.03 MPa for V. cholerae, and 1.52 ± 0.06 MPa for S. aureus (mean ± SD). The microfluidic approach allows examination of hundreds of cells at once and is readily applied to Gram-negative and Gram-positive organisms as well as rod-shaped and cocci cells, allowing further examination of the structural causes behind differences in cell envelope Young's modulus among bacterial species and strains.


Subject(s)
Elastic Modulus , Escherichia coli , Staphylococcus aureus , Vibrio cholerae , Staphylococcus aureus/physiology , Staphylococcus aureus/drug effects , Vibrio cholerae/physiology , Escherichia coli/physiology , Escherichia coli/drug effects , Finite Element Analysis , Cell Membrane/physiology , Cell Membrane/drug effects , Cell Wall/drug effects
2.
PLoS Genet ; 20(4): e1011234, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38598601

ABSTRACT

Peptidoglycan (PG) is the main component of the bacterial cell wall; it maintains cell shape while protecting the cell from internal osmotic pressure and external environmental challenges. PG synthesis is essential for bacterial growth and survival, and a series of PG modifications are required to allow expansion of the sacculus. Endopeptidases (EPs), for example, cleave the crosslinks between adjacent PG strands to allow the incorporation of newly synthesized PG. EPs are collectively essential for bacterial growth and must likely be carefully regulated to prevent sacculus degradation and cell death. However, EP regulation mechanisms are poorly understood. Here, we used TnSeq to uncover novel EP regulators in Vibrio cholerae. This screen revealed that the carboxypeptidase DacA1 (PBP5) alleviates EP toxicity. dacA1 is essential for viability on LB medium, and this essentiality was suppressed by EP overexpression, revealing that EP toxicity both mitigates, and is mitigated by, a defect in dacA1. A subsequent suppressor screen to restore viability of ΔdacA1 in LB medium identified hypomorphic mutants in the PG synthesis pathway, as well as mutations that promote EP activation. Our data thus reveal a more complex role of DacA1 in maintaining PG homeostasis than previously assumed.


Subject(s)
Carboxypeptidases , Cell Wall , Endopeptidases , Peptidoglycan , Vibrio cholerae , Peptidoglycan/metabolism , Vibrio cholerae/genetics , Vibrio cholerae/metabolism , Endopeptidases/genetics , Endopeptidases/metabolism , Carboxypeptidases/genetics , Carboxypeptidases/metabolism , Cell Wall/metabolism , Cell Wall/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial , Epistasis, Genetic , Mutation
3.
bioRxiv ; 2024 Mar 03.
Article in English | MEDLINE | ID: mdl-38463991

ABSTRACT

Antimicrobial peptides (AMPs) are a promising tool with which to fight rising antibiotic resistance. However, pathogenic bacteria are equipped with several AMP defense mechanisms, whose contributions to AMP resistance are often poorly defined. Here, we evaluate the genetic determinants of resistance to an insect AMP, cecropin B, in the opportunistic pathogen Enterobacter cloacae. Single-cell analysis of E. cloacae's response to cecropin revealed marked heterogeneity in cell survival, phenotypically reminiscent of heteroresistance (the ability of a subpopulation to grow in the presence of supra-MIC concentration of antimicrobial). The magnitude of this response was highly dependent on initial E. cloacae inoculum. We identified 3 genetic factors which collectively contribute to E. cloacae resistance in response to the AMP cecropin: The PhoPQ-two-component system, OmpT-mediated proteolytic cleavage of cecropin, and Rcs-mediated membrane stress response. Altogether, this evidence suggests that multiple, independent mechanisms contribute to AMP resistance in E. cloacae.

SELECTION OF CITATIONS
SEARCH DETAIL