Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Drug Saf ; 47(2): 173-182, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38062261

ABSTRACT

INTRODUCTION: The Vaccine Adverse Event Reporting System (VAERS) has already been challenged by an extreme increase in the number of individual case safety reports (ICSRs) after the market introduction of coronavirus disease 2019 (COVID-19) vaccines. Evidence from scientific literature suggests that when there is an extreme increase in the number of ICSRs recorded in spontaneous reporting databases (such as the VAERS), an accompanying increase in the number of disproportionality signals (sometimes referred to as 'statistical alerts') generated is expected. OBJECTIVES: The objective of this study was to develop a natural language processing (NLP)-based approach to optimize signal management by excluding disproportionality signals related to listed adverse events following immunization (AEFIs). COVID-19 vaccines were used as a proof-of-concept. METHODS: The VAERS was used as a data source, and the Finding Associated Concepts with Text Analysis (FACTA+) was used to extract signs and symptoms of listed AEFIs from MEDLINE for COVID-19 vaccines. Disproportionality analyses were conducted according to guidelines and recommendations provided by the US Centers for Disease Control and Prevention. By using signs and symptoms of listed AEFIs, we computed the proportion of disproportionality signals dismissed for COVID-19 vaccines using this approach. Nine NLP techniques, including Generative Pre-Trained Transformer 3.5 (GPT-3.5), were used to automatically retrieve Medical Dictionary for Regulatory Activities Preferred Terms (MedDRA PTs) from signs and symptoms extracted from FACTA+. RESULTS: Overall, 17% of disproportionality signals for COVID-19 vaccines were dismissed as they reported signs and symptoms of listed AEFIs. Eight of nine NLP techniques used to automatically retrieve MedDRA PTs from signs and symptoms extracted from FACTA+ showed suboptimal performance. GPT-3.5 achieved an accuracy of 78% in correctly assigning MedDRA PTs. CONCLUSION: Our approach reduced the need for manual exclusion of disproportionality signals related to listed AEFIs and may lead to better optimization of time and resources in signal management.


Subject(s)
Adverse Drug Reaction Reporting Systems , Natural Language Processing , Vaccines , Humans , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Vaccines/adverse effects
2.
PLOS Digit Health ; 2(12): e0000409, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38055685

ABSTRACT

Post-marketing reports of suspected adverse drug reactions are important for establishing the safety profile of a medicinal product. However, a high influx of reports poses a challenge for regulatory authorities as a delay in identification of previously unknown adverse drug reactions can potentially be harmful to patients. In this study, we use natural language processing (NLP) to predict whether a report is of serious nature based solely on the free-text fields and adverse event terms in the report, potentially allowing reports mislabelled at time of reporting to be detected and prioritized for assessment. We consider four different NLP models at various levels of complexity, bootstrap their train-validation data split to eliminate random effects in the performance estimates and conduct prospective testing to avoid the risk of data leakage. Using a Swedish BERT based language model, continued language pre-training and final classification training, we achieve close to human-level performance in this task. Model architectures based on less complex technical foundation such as bag-of-words approaches and LSTM neural networks trained with random initiation of weights appear to perform less well, likely due to the lack of robustness that a base of general language training provides.

SELECTION OF CITATIONS
SEARCH DETAIL
...