Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.263
Filter
1.
Phys Rev Lett ; 132(22): 220402, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38877901

ABSTRACT

By utilizing biorthogonal bases, we develop a comprehensive framework for studying biorthogonal dynamical quantum phase transitions in non-Hermitian systems. With the help of the previously overlooked associated state, we define the automatically normalized biorthogonal Loschmidt echo. This approach is capable of handling arbitrary non-Hermitian systems with complex eigenvalues and naturally eliminates the negative value of Loschmidt rate obtained without the biorthogonal bases. Taking the non-Hermitian Su-Schrieffer-Heeger model as a concrete example, a 1/2 change of dynamical topological order parameter in biorthogonal bases is observed which is not shown in self-normal bases. Furthermore, we discover that the periodicity of biorthogonal dynamical quantum phase transitions depends on whether the two-level subsystem at the critical momentum oscillates or reaches a steady state.

2.
Huan Jing Ke Xue ; 45(6): 3533-3542, 2024 Jun 08.
Article in Chinese | MEDLINE | ID: mdl-38897773

ABSTRACT

The form of soil nitrogen input significantly affects soil CO2 emission. As a new form of nitrogen input, biochar-loaded ammonia nitrogen not only reduces the input of chemical nitrogen fertilizer in farmland but also reduces the cost of environmental treatment. It is of great significance to promote the zero growth of national chemical fertilizer, the prevention and control of farmland non-point source pollution, and the realization of the national goal of "carbon peak" and "carbon neutralization." Through an indoor culture experiment, the effects of different nitrogen input forms on soil carbon emission, enzyme activity, and microbial community were studied through four treatments:no fertilization (CK), single application of chemical nitrogen fertilizer (CF), biochar combined application of chemical nitrogen fertilizer (BF), and biochar-loaded ammonia nitrogen (BN). The results showed that compared with that in CF, BF significantly increased cumulative carbon emissions (66.24 %), whereas BN had no significant difference. It is worth noting that the cumulative carbon emissions were significantly reduced by 35.28 % compared with that in BF and BN. Compared with those in CF and BF, the activities of ß-glucosidase, peroxidase, and polyphenol oxidase treated with BN significantly increased by 20.25 % and 5.20 %, respectively. Compared with that in CF, the BF treatment increased microbial community richness and community diversity, whereas the BN treatment decreased microbial community richness. Compared with that in BF, the relative abundance of Proteobacteria decreased by 11.16 %, and the relative abundance of Actinobacteria and Bacteroidota increased by 8.12 % and 5.83 %, respectively, in which xylosidase activity was the most important soil factor affecting microbial community structure. The relative abundance of Chloroflexi was significantly correlated with cellobiose hydrolase activity, and the relative abundance of Gemmatimonadetes was significantly correlated with ß-glucosidase activity. There was a very significant correlation between the relative abundance of Proteobacteria and cumulative carbon emissions. To summarize, compared with those under biochar combined with chemical nitrogen fertilizer, biochar loaded with ammonia nitrogen significantly reduced cumulative carbon emissions, and its emission reduction effect was better. The results of this study will be beneficial to the landing of the national "double carbon strategy," the healthy development of the biological natural gas industry, the construction of the national green cultivation circular agriculture system, and the realization of the national zero growth strategy of chemical fertilizer.


Subject(s)
Ammonia , Carbon , Charcoal , Fertilizers , Nitrogen , Soil Microbiology , Soil , Charcoal/chemistry , Soil/chemistry , Microbiota/drug effects , Bacteria/classification , Bacteria/growth & development , Bacteria/drug effects , Carbon Dioxide/analysis
3.
Sensors (Basel) ; 24(11)2024 May 27.
Article in English | MEDLINE | ID: mdl-38894236

ABSTRACT

Frequency agility refers to the rapid variation of the carrier frequency of adjacent pulses, which is an effective radar active antijamming method against frequency spot jamming. Variation patterns of traditional pseudo-random frequency hopping methods are susceptible to analysis and decryption, rendering them ineffective against increasingly sophisticated jamming strategies. Although existing reinforcement learning-based methods can adaptively optimize frequency hopping strategies, they are limited in adapting to the diversity and dynamics of jamming strategies, resulting in poor performance in the face of complex unknown jamming strategies. This paper proposes an AK-MADDPG (Adaptive K-th order history-based Multi-Agent Deep Deterministic Policy Gradient) method for designing frequency hopping strategies in frequency agile radar. Signal pulses within a coherent processing interval are treated as agents, learning to optimize their hopping strategies in the case of unknown jamming strategies. Agents dynamically adjust their carrier frequencies to evade jamming and collaborate with others to enhance antijamming efficacy. This approach exploits cooperative relationships among the pulses, providing additional information for optimized frequency hopping strategies. In addition, an adaptive K-th order history method has been introduced into the algorithm to capture long-term dependencies in sequential data. Simulation results demonstrate the superior performance of the proposed method.

4.
Curr Pharm Des ; 2024 May 02.
Article in English | MEDLINE | ID: mdl-38698755

ABSTRACT

BACKGROUND: Familial adenomatous polyposis (FAP) is an inherited disorder. At present, an increasing number of medications are being employed to treat FAP; however, only a few have been assessed for their efficacy and safety. Therefore, this study aimed to conduct a network meta-analysis to compare the therapeutic outcomes and adverse drug reactions of all FAP-associated medications. METHOD: Six relevant databases were searched to identify pertinent randomized controlled trials (RCTs), and information on the dosage and frequency of various drugs was extracted. Additionally, data on changes in polyp counts and dimensions, as well as treatment-related adverse reactions for different medications were collected. The Bayesian method was employed to directly or indirectly compare the impact of different treatment regimens on changes in polyp numbers and diameters, and the safety of the drugs was investigated. RESULTS: CXB at 16 mg/kg/day significantly reduced polyp numbers. Celecoxib at 8 mg/kg/day and sulindac (150 mg twice daily) plus erlotinib (75 mg/day) were effective for tolerant FAP patients. Additionally, EPAFFA 2 g daily and sulindac (150 mg twice daily) plus erlotinib (75 mg/day) emerged as the most effective for reducing polyp size. CONCLUSION: The most effective treatment for reducing the number of colorectal polyps is celecoxib 16 mg/kg/day. On the other hand, a daily dosage of 2 g EPA-FFA demonstrates the best results in terms of decreasing colorectal polyp diameter.

5.
Eur J Histochem ; 68(2)2024 May 22.
Article in English | MEDLINE | ID: mdl-38779782

ABSTRACT

Osteoarthritis (OA) is a common degenerative joint disease in the elderly, while oxidative stress-induced chondrocyte degeneration plays a key role in the pathologic progression of OA. One possible reason is that the expression of nuclear factor erythroid 2-related factor 2 (Nrf2), which acts as the intracellular defense factor against oxidative stress, is significantly inhibited in chondrocytes. Spinosin (SPI) is a potent Nrf2 agonist, but its effect on OA is still unknown. In this study, we found that SPI can alleviate tert-Butyl hydroperoxide (TBHP)-induced extracellular matrix degradation of chondrocytes. Additionally, SPI can effectively activate Nrf2, heme oxygenase-1 (HO-1), and NADPH quinone oxidoreductase 1 (NQO1) in chondrocytes under the TBHP environment. When Nrf2 was silenced by siRNA, the cartilage protective effect of SPI was also weakened. Finally, SPI showed good alleviative effects on OA in mice. Thus, SPI can ameliorate oxidative stress-induced chondrocyte dysfunction and exhibit a chondroprotective effect through activating the Nrf2/HO-1 pathway, which may provide a novel and promising option for the treatment of OA.


Subject(s)
Chondrocytes , Heme Oxygenase-1 , NF-E2-Related Factor 2 , Osteoarthritis , Signal Transduction , NF-E2-Related Factor 2/metabolism , Animals , Osteoarthritis/metabolism , Osteoarthritis/drug therapy , Osteoarthritis/pathology , Signal Transduction/drug effects , Chondrocytes/metabolism , Chondrocytes/drug effects , Chondrocytes/pathology , Heme Oxygenase-1/metabolism , Mice , Oxidative Stress/drug effects , tert-Butylhydroperoxide/pharmacology , Male , Mice, Inbred C57BL , Membrane Proteins
6.
Biomed Pharmacother ; 175: 116706, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38713944

ABSTRACT

Excessive oxidative stress and NLRP3 inflammasome activation are considered the main drivers of inflammatory bowel disease (IBD), and inhibition of inflammasomes ameliorates clinical symptoms and morphological manifestations of IBD. Herein, we examined the roles of NLRP3 activation in IBD and modulation of NLRP3 by sulforaphane (SFN), a compound with multiple pharmacological activities that is extracted from cruciferous plants. To simulate human IBD, we established a mouse colitis model by administering dextran sodium sulfate in the drinking water. SFN (25, 50 mg·kg-1·d-1, ig) or the positive control sulfasalazine (500 mg/kg, ig) was administered to colitis-affected mice for 7 days. Model mice displayed pathological alterations in colon tissue as well as classic symptoms of colitis beyond substantial tissue inflammation. Expression of NLRP3, ASC, and caspase-1 was significantly elevated in the colonic epithelium. The expression of NLRP3 inflammasomes led to activation of downstream proteins and increases in the cytokines IL-18 and IL-1ß. SFN administration either fully or partially reversed these changes, thus restoring IL-18 and IL-1ß, substantially inhibiting NLRP3 activation, and decreasing inflammation. SFN alleviated the inflammation induced by LPS and NLRP3 agonists in RAW264.7 cells by decreasing the levels of reactive oxygen species. In summary, our results revealed the pathological roles of oxidative stress and NLRP3 in colitis, and indicated that SFN might serve as a natural NLRP3 inhibitor, thereby providing a new strategy for alternative colitis treatment.


Subject(s)
Colitis, Ulcerative , Disease Models, Animal , Inflammasomes , Isothiocyanates , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein , Oxidative Stress , Sulfoxides , Animals , Isothiocyanates/pharmacology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Sulfoxides/pharmacology , Oxidative Stress/drug effects , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/metabolism , Colitis, Ulcerative/pathology , Colitis, Ulcerative/chemically induced , Inflammasomes/metabolism , Inflammasomes/drug effects , Mice , Male , Dextran Sulfate , Colon/drug effects , Colon/pathology , Colon/metabolism , RAW 264.7 Cells
7.
Diagn Microbiol Infect Dis ; 109(3): 116278, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38723451

ABSTRACT

The aim of this study was to evaluate the influence factors of metagenomic next-generation sequencing (mNGS) negative results in the diagnosed patients with spinal infection. mNGS test was applied in a cohort of 114 patients with suspected spinal infection, among which 56 patients had a final diagnosis of spinal infection. mNGS achieved a sensitivity of 75.0% (95% CI, 61.6% to 85.6%) and a specificity of 84.5% (95% CI, 72.6% to 92.7%), using histopathology and culture results as reference. Diagnosed patients with a negative culture result had lower white blood cell account, percentage of neutrophilic granulocyte, C-reactive protein (all P<0.05) and relatively higher rate of prior antimicrobial treatment history (P=0.059). However, diagnosed patients with a negative mNGS result did not have such difference with mNGS-positive patients, suggesting that mNGS was not strictly limited by the above indicators, which presented the advantages of this technique from another point of view.


Subject(s)
High-Throughput Nucleotide Sequencing , Metagenomics , Sensitivity and Specificity , Humans , High-Throughput Nucleotide Sequencing/methods , Male , Female , Metagenomics/methods , Middle Aged , Aged , Adult , Aged, 80 and over , Young Adult , Spinal Diseases/microbiology , Spinal Diseases/diagnosis
8.
Anal Methods ; 16(20): 3263-3270, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38738477

ABSTRACT

To detect redox potential evolution during the initial stage of an acute wound, a redox-sensitive SERS-active optical fiber was fabricated by integrating redox-sensitive SERS probes in a hole of an optical fiber. The redox-sensitive SERS-active optical fibers carried redox-sensitive SERS probes into the inside of a wound to sense its redox potential. The laser was transmitted to the redox-sensitive SERS probes in the body by optical fibers, and the SERS signals of the redox-sensitive SERS probes were transferred out of the body by optical fibers to indicate the redox potentials in the wound. The redox-sensitive SERS probes dynamically sensed the redox potential in vivo, and their SERS signals were collected constantly to indicate the redox potentials. The assessments in vivo and in vitro proved the responsiveness of redox-sensitive SERS-active optical fibers. The redox potential evolution during the initial stage of an acute wound with the treatments of different concentrations of glucose was detected to verify the feasibility of redox-sensitive SERS-active optical fibers to dynamically detect redox potentials in vivo. The redox-sensitive SERS-active optical fiber would be a versatile tool to explore the roles of redox potentials in living organisms.


Subject(s)
Optical Fibers , Oxidation-Reduction , Spectrum Analysis, Raman , Spectrum Analysis, Raman/methods , Animals , Wound Healing , Male , Mice
9.
Water Res ; 257: 121670, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38723347

ABSTRACT

In this study, the performance of a novel up-flow electrocatalytic hydrolytic acidification reactor (UEHAR) and anoxic/oxic (ANO2/O2) combined system (S2) was compared with that of a traditional anaerobic/anoxic/oxic (ANA/ANO1/O1) system (S1) for treating coking wastewater at different hydraulic retention time (HRT). The effluent non-compliance rates of chemical oxygen demand (COD) of S2 were 45 %, 35 %, 25 % and 55 % lower than S1 with HRT of 94, 76, 65 and 54 h. The removal efficiency of benzene, toluene, ethylbenzene and xylene (BTEX) in S2 was 10.6 ± 2.4 % higher than that in S1. The effluent concentration of volatile phenolic compounds (VPs) in S2 was lower than 0.3 mg/L. The dehydrogenase activity (DHA) and adenosine triphosphate (ATP) of O2 were enhanced by 67.2 ± 26.3 % and 40.6 ± 14.2 % compared with O1, respectively. Moreover, COD was used to reflect the mineralization index of organic matter, and the positive correlation between COD removal rate and microbial activity, VPs, and BTEX was determined. These results indicated that S2 had extraordinary microbial activity, stable pollutant removal ability, and transcendental effluent compliance rate.


Subject(s)
Bioreactors , Coke , Waste Disposal, Fluid , Wastewater , Wastewater/chemistry , Waste Disposal, Fluid/methods , Hydrolysis , Biological Oxygen Demand Analysis , Water Pollutants, Chemical , Anaerobiosis , Catalysis
10.
Biochem Biophys Res Commun ; 720: 150102, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-38759302

ABSTRACT

The emergence of drug-resistant bacteria, facilitated by metallo-beta-lactamases (MBLs), presents a significant obstacle to the effective use of antibiotics in the management of clinical drug-resistant bacterial infections. AFM-1 is a MBL derived from Alcaligenes faecalis and shares 86% homology with the NDM-1 family. Both AFM-1 and NDM-1 demonstrate the ability to hydrolyze ampicillin and other ß-lactam antibiotics, however, their substrate affinities vary, and the specific reason for this variation remains unknown. We present the high-resolution structure of AFM-1. The active center of AFM-1 binds two zinc ions, and the conformation of the key amino acid residues in the active center is in accordance with that of NDM-1. However, the substrate-binding pocket of AFM-1 is considerably smaller than that of NDM-1. Additionally, the mutation of amino acid residues in the Loop3 region, as compared to NDM-1, results in the formation of a dense hydrophobic patch comprised of hydrophobic amino acid residues in this area, which facilitates substrate binding. Our findings lay the foundation for understanding the molecular mechanism of AFM-1 with a high affinity for substrates and provide a novel theoretical foundation for addressing the issue of drug resistance caused by B1 MBLs.


Subject(s)
Models, Molecular , beta-Lactamases , beta-Lactamases/chemistry , beta-Lactamases/metabolism , beta-Lactamases/ultrastructure , beta-Lactamases/genetics , Alcaligenes faecalis/enzymology , Alcaligenes faecalis/chemistry , Protein Conformation , Zinc/chemistry , Zinc/metabolism , Crystallography, X-Ray , Catalytic Domain , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Amino Acid Sequence , Binding Sites
11.
Micromachines (Basel) ; 15(5)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38793139

ABSTRACT

This study establishes thermodynamic assumptions regarding the growth of condensation droplets and a mathematical formulation of droplet energy functionals. A model of the gas-liquid interface condensation rate based on kinetic theory is derived to clarify the relationship between condensation conditions and intermediate variables. The energy functional of a droplet, derived using the principle of least action, partially elucidates the inherent self-organizing growth laws of condensed droplets, enabling predictive modeling of the droplet's growth. Considering the effects of the condensation environment and droplet heat transfer mechanisms on droplet growth dynamics, we divide the process into three distinct stages, marked by critical thresholds of 105 nm3 and 1010 nm3. Our model effectively explains why the observed contact angle fails to reach the expected Wenzel contact angle. This research presents a detailed analysis of the factors affecting surface condensation and heat transfer. The predictions of our model have an error rate of less than 3% error compared to baseline experiments. Consequently, these insights can significantly contribute to and improve the design of condensation heat transfer surfaces for the phase-change heat sinks in microprocessor chips.

12.
BMC Vet Res ; 20(1): 207, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760783

ABSTRACT

BACKGROUND: Although ultrasonography (US) has been widely used in the diagnosis of human diseases to monitor the progress of cystic echinococcosis (CE) control, the screening method for hepatic CE in sheep flocks requires adjustment. In this study, we used a US scanner to screen sheep flocks and evaluated the efficacy of dosing dogs once a year with praziquantel for 7 years from 2014 to 2021. METHODS: All sheep in the three flocks were screened using an ultrasound scanner in 2014 and compared with the prevalence of infection in 2021 in Bayinbuluke, Xinjiang, China. Sheep age was determined using incisor teeth. Cyst activity and calcification were determined using US images. The dogs were dewormed with praziquantel once a year to control echinococcosis in the community. RESULTS: Three flocks had 968 sheep in 2014, with 13.22%, 22.62%, 18.7%, 27.27%, 11.88%, and 6.3% of sheep aged 1, 2, 3, 4, 5, and ≥ 6 years old, respectively. US scanning revealed that the overall CE prevalence was 38.43% (372/968), with active cysts and calcified cysts present in 9.40% (91/968) and 29.02% (281/968) of the sheep, respectively. For the young sheep aged 1 and 2 years, the prevalence of active and calcified cysts was: 1.56% and 0.91%, and 10.94% and 18.72%, respectively. Approximately 15.15% and 16.52% of the 4- and 5-year-old sheep, respectively, harbored active cysts. There was no significant difference in the infection rates of sheep between 2014 and 2021 (P > 0.05). CONCLUSIONS: US is a practical tool for the field screening of CE in sheep flocks. One-third of the sheep population in the flocks was 1-2 years old, and these sheep played a very limited role in CE transmission, as most of the cysts were calcified. Old sheep, especially culled aged sheep, play a key role in the transmission of CE. Dosing dogs once a year did not affect echinococcosis control.


Subject(s)
Echinococcosis, Hepatic , Sheep Diseases , Ultrasonography , Animals , Sheep Diseases/epidemiology , Sheep Diseases/parasitology , Sheep Diseases/diagnostic imaging , Sheep , China/epidemiology , Ultrasonography/veterinary , Echinococcosis, Hepatic/veterinary , Echinococcosis, Hepatic/epidemiology , Echinococcosis, Hepatic/diagnostic imaging , Prevalence , Dogs , Praziquantel/therapeutic use , Anthelmintics/therapeutic use , Female
13.
Phys Rev Lett ; 132(11): 113801, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38563935

ABSTRACT

Manipulating radiation asymmetry of photonic structures is of particular interest in many photonic applications such as directional optical antenna, high efficiency on-chip lasers, and coherent light control. Here, we proposed a term of pseudopolarization to reveal the topological nature of radiation asymmetry in bilayer metagratings. Robust pseudopolarization vortex with an integer topological charge exists in P-symmetry metagrating, allowing for tunable directionality ranging from -1 to 1 in synthetic parameter space. When P-symmetry breaking, such vortex becomes pairs of C points due to the conservation law of charge, leading to the phase difference of radiation asymmetry from π/2 to 3π/2. Furthermore, topologically enabled coherent perfect absorption is robust with customized phase difference at will between two counterpropagating external light sources. This Letter can not only enrich the understanding of two particular topological photonic behaviors, i.e., bound state in the continuum and unidirectional guided resonance, but also provide a topological view on radiation asymmetry, opening an unexplored avenue for asymmetric light manipulation in on-chip laser, light-light switch, and quantum emitters.

14.
Plant Physiol Biochem ; 210: 108615, 2024 May.
Article in English | MEDLINE | ID: mdl-38631158

ABSTRACT

Magnesium is one of the essential nutrients for plant growth, and plays a pivotal role in plant development and metabolism. Soil magnesium deficiency is evident in citrus production, which ultimately leads to failure of normal plant growth and development, as well as decreased productivity. Citrus is mainly propagated by grafting, so it is necessary to fully understand the different regulatory mechanisms of rootstock and scion response to magnesium deficiency. Here, we characterized the differences in morphological alterations, physiological metabolism and differential gene expression between trifoliate orange rootstocks and lemon scions under normal and magnesium-deficient conditions, revealing the different responses of rootstocks and scions to magnesium deficiency. The transcriptomic data showed that differentially expressed genes were enriched in 14 and 4 metabolic pathways in leaves and roots, respectively, after magnesium deficiency treatment. And the magnesium transport-related genes MHX and MRS2 may respond to magnesium deficiency stress. In addition, magnesium deficiency may affect plant growth by affecting POD, SOD, and CAT enzyme activity, as well as altering the levels of hormones such as IAA, ABA, GA3, JA, and SA, and the expression of related responsive genes. In conclusion, our research suggests that the leaves of lemon grafted onto trifoliate orange were more significantly affected than the roots under magnesium-deficient conditions, further indicating that the metabolic imbalance of scion lemon leaves was more severe.


Subject(s)
Citrus , Gene Expression Regulation, Plant , Magnesium , Seedlings , Citrus/metabolism , Citrus/genetics , Seedlings/metabolism , Seedlings/genetics , Seedlings/growth & development , Magnesium/metabolism , Plant Roots/metabolism , Plant Roots/growth & development , Plant Roots/genetics , Magnesium Deficiency/metabolism , Plant Leaves/metabolism , Stress, Physiological , Plant Growth Regulators/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics
15.
J Agric Food Chem ; 72(14): 7794-7806, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38561246

ABSTRACT

To investigate the effects of fertilization methods and types on wheat rhizosphere microorganisms, macroelement (N, K) and microelement (Zn) fertilizers were applied on wheat by foliar spraying (FS) and root irrigation (RI) methods in a field experiment. The results indicated that fertilization methods and types can have significant impacts on the diversity and structure of rhizospheric microorganisms in wheat. The application method produced more significant effects than the fertilizer type. RI-N played a more important role in improving the wheat yield and quality and affected the changes in some nitrogen-fixing bacterial communities. Finally, eight strains of bacteria belonging to Pseudomonas azotoformans and P. cedrina showed positive effects on the growth of wheat seedlings. Overall, our study provides a better understanding of the dynamics of wheat rhizosphere microbial communities and their relation to fertilization, yield, and quality, showing that plant growth-promoting rhizobacteria with nitrogen fixing may be a potential approach for more sustainable agriculture production.


Subject(s)
Microbiota , Triticum , Rhizosphere , Nitrogen/analysis , Fertilizers/analysis , Fertilization , Soil/chemistry , Soil Microbiology
16.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(3): 368-376, 2024 Mar 10.
Article in Chinese | MEDLINE | ID: mdl-38448031

ABSTRACT

In recent years, mRNA drugs have shown a great potential for the treatment of genetic diseases and attracted the attention of many researchers. This article has reviewed the advance in the research of mRNA drugs for the treatment of genetic diseases over the past 30 years, including their mechanisms of action and structure design, with a focus on their advantages as alternative therapies such as high specificity, low dosage, and sustained expression. Meanwhile, challenges for the effective delivery and storage methods for the mRNA drugs are discussed, with an aim to provide guidance for subsequent researches.


Subject(s)
RNA, Messenger , Humans , RNA, Messenger/genetics
17.
Mol Med Rep ; 29(4)2024 Apr.
Article in English | MEDLINE | ID: mdl-38426535

ABSTRACT

Following the publication of this paper, it was drawn to the Editor's attention by a concerned reader that the cellular morphological data in Fig. 1C, the immunofluorescence data shown in Fig. 1E, and certain of the scratch­wound assay data shown in Fig. 2A were strikingly similar to data appearing in different form in other articles written by different authors at different research institutes that had already been published. Owing to the fact that the contentious data in the above article had already been published prior to its submission to Molecular Medicine Reports, the Editor has decided that this paper should be retracted from the Journal. The authors were asked for an explanation to account for these concerns, but the Editorial Office did not receive a reply. The Editor apologizes to the readership for any inconvenience caused. [Molecular Medicine Reports 18: 308­314, 2018; DOI: 10.3892/mmr.2018.9005].

18.
Heliyon ; 10(6): e27996, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38510024

ABSTRACT

Background: Human umbilical cord mesenchymal stem cells (UC-MSCs) are one of the most extensively researched stem cell types due to their potential for multi-lineage differentiation, secretion of regenerative factors, modulations of immunological activities, and the release of regenerative substances and influence immunological processes. Since UC-MSCs must be cultivated on a large scale for clinical use, selecting the appropriate storing passage, such as the usage-based passage of UC-MSCs, is critical for long-term autologous or allogeneic usage. Long-term cultivation of stem cells, on the other hand, causes them to lose their pluripotent differentiation capacity. As a result, distinguishing between high and low passages of UC-MSCs and identifying the particular variations associated with stem cells and their modes of action is essential for regenerative medicine. Therefore, we investigated the biological features and transcriptional changes of UC-MSCs over passages. Methods: UC-MSCs were isolated from the tissues of the human umbilical cord, and UC-MSCs from five passages (P1, P3, P5, P10 and P15) with three repetitions were compared and identified based on morphology, cell markers, differentiation capacity, and aging-related characteristics. It was previously assumed that the phenotype of cells before the P10 passage was stable, defined as early passage, and that culture could be continued until the 15th passage, defined as late passage. Next, the five passages of UC-MSCs were sequenced using high-throughput complete transcriptome sequencing. Fuzzy C-Means Clustering (FCM) and Weighted Gene Co-expression Network Analysis (WGCNA) were used to find hub genes, and gene silencing was performed to investigate the impact of missing genes on the stemness of UC-MSC cells. Results: UC-MSCs of different passages displayed similar surface markers, including CD73, CD105, CD90, CD34, CD45 and HLA-DR. However, the proliferation time of late-phase UC-MSCs was longer than that of early-phase UC-MSCs, and the expression of the senescence-associated (SA)-ß-gal staining marker was higher. At the same time, pluripotency markers (NANOG, OCT4, SOX2 and KIF4A) were down-regulated, and the multi-differentiation potential was reduced. Meanwhile, KIFC1 and UBE2C were down-regulated in late-phase UC-MSCs, which were involved in the maintenance of stemness. Conclusions: KIFC1 and UBE2C were highly expressed in early-UC-MSCs and showed a downward gradient trend with cell expansion in vitro. They regulated UC-MSC proliferation, colony sphere formation, multiple differentiation, stemness maintenance, and other biological manifestations. Therefore, they are anticipated to be new biomarkers for UC-MSCs quality identification in regenerative medicine applications.

19.
J Mater Chem B ; 12(13): 3209-3225, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38497405

ABSTRACT

Photodynamic therapy (PDT) exhibits great application prospects in future clinical oncology due to its spatiotemporal controllability and good biosafety. However, the antitumor efficacy of PDT is seriously hindered by many factors, including tumor hypoxia, limited light penetration ability, and strong defense mechanisms of tumors. Considering that it is difficult to completely solve the first two problems, enhancing the lethality of antitumor PDT has become a good idea to extend its clinical application. Herein, we summarize the nanoplatform-involved strategies to effectively amplify the tumoricidal capability of current PDT and then discuss the present bottlenecks and prospects of the nanoplatform-based PDT sensitization strategies in tumor therapy. We hope this review will provide some references for others to design high-performance PDT nanoplatforms for tumor therapy.


Subject(s)
Neoplasms , Photochemotherapy , Humans , Xenograft Model Antitumor Assays , Neoplasms/therapy
20.
Phys Chem Chem Phys ; 26(10): 8228-8236, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38385276

ABSTRACT

Group theory is a powerful tool to explore fundamental symmetry constraints for the physical properties of crystal structures, e.g. it is well-known that only a few components of the elastic constants are independent due to the symmetry constraint. This work further applies group theory to derive constraint relationships for high-order elastic constants with respect to the orientation angle, where the constraint relationships are more explicit than the traditional tensor transformation law. These analytic symmetry constraints are adopted to explain the molecular dynamics simulation results, which disclose that the high-order elastic constants are highly anisotropic with an anisotropy percentage of up to 25% for the hexagonal boron nitride monolayer. The elastic constant is a basic quantity in the mechanics field, so its high anisotropy shall cause strong anisotropy for other mechanical properties. Based on the anisotropic high-order elastic constants, we demonstrate that Poisson's ratio is highly anisotropic for the hexagonal boron nitride at large strains. These findings provide fundamental insights into the symmetry dependence of high-order elastic constants and other mechanical properties.

SELECTION OF CITATIONS
SEARCH DETAIL
...