Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 15(1): 91-105, 2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36520607

ABSTRACT

We exploit the electrostatic interactions between the positively charged neuroprotective peptide, pituitary adenylate cyclase-activating polypeptide (PACAP), and negatively charged poly(lactic-co-glycolic acid) (PLGA) nanoparticles to control PACAP release from the surface of nanoparticles dispersed in a hyaluronan-methylcellulose (HAMC) hydrogel composite. PACAP is a promising therapeutic for the treatment of neurological disorders, yet it has been difficult to deliver in vivo. Herein, the PACAP release rate was tuned by manipulating peptide adsorption onto the surface of blank nanoparticles by modifying either nanoparticle loading in the hydrogel or nanoparticle surface charge. This peptide-nanoparticle interaction was controlled by the pH-responsive carboxylic acid end terminal groups of PLGA. We further validated this system with the controlled release of a novel stabilized PACAP analog: Ac-[Ala15, Ala20]PACAP-propylamide, which masks its recognition to peptidases in circulation. Both wild-type and stabilized PACAP released from the vehicle increased the production of neuroprotective Interleukin-6 from cultured primary astrocytes. Using computational fluid dynamics methods, PACAP release from the composite was predicted based on experimentally derived adsorption isotherms, which exhibited similar release profiles to experimental data. This versatile adsorption-based system was used to deliver PACAP locally to the brains of stroke-injured mice over a 10 day period in vivo, highlighting its effectiveness for the controlled release of PACAP to the central nervous system.


Subject(s)
Hydrogels , Pituitary Adenylate Cyclase-Activating Polypeptide , Mice , Animals , Nanoparticle Drug Delivery System , Delayed-Action Preparations , Adsorption , Static Electricity
2.
Micromachines (Basel) ; 12(2)2021 Jan 26.
Article in English | MEDLINE | ID: mdl-33530564

ABSTRACT

Polydimethylsiloxane (PDMS) is a silicone-based synthetic material used in various biomedical applications due to its properties, including transparency, flexibility, permeability to gases, and ease of use. Though PDMS facilitates and assists the fabrication of complicated geometries at micro- and nano-scales, it does not optimally interact with cells for adherence and proliferation. Various strategies have been proposed to render PDMS to enhance cell attachment. The majority of these surface modification techniques have been offered for a static cell culture system. However, dynamic cell culture systems such as organ-on-a-chip devices are demanding platforms that recapitulate a living tissue microenvironment's complexity. In organ-on-a-chip platforms, PDMS surfaces are usually coated by extracellular matrix (ECM) proteins, which occur as a result of a physical and weak bonding between PDMS and ECM proteins, and this binding can be degraded when it is exposed to shear stresses. This work reports static and dynamic coating methods to covalently bind collagen within a PDMS-based microfluidic device using polydopamine (PDA). These coating methods were evaluated using water contact angle measurement and atomic force microscopy (AFM) to optimize coating conditions. The biocompatibility of collagen-coated PDMS devices was assessed by culturing primary human bronchial epithelial cells (HBECs) in microfluidic devices. It was shown that both PDA coating methods could be used to bind collagen, thereby improving cell adhesion (approximately three times higher) without showing any discernible difference in cell attachment between these two methods. These results suggested that such a surface modification can help coat extracellular matrix protein onto PDMS-based microfluidic devices.

3.
Adv Sci (Weinh) ; 7(21): 2001860, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33173732

ABSTRACT

Premature neonates suffer from respiratory morbidity as their lungs are immature, and current supportive treatment such as mechanical ventilation or extracorporeal membrane oxygenation causes iatrogenic injuries. A non-invasive and biomimetic concept known as the "artificial placenta" (AP) would be beneficial to overcome complications associated with the current respiratory support of preterm infants. Here, a pumpless oxygenator connected to the systemic circulation supports the lung function to relieve respiratory distress. In this paper, the first successful operation of a microfluidic, artificial placenta type neonatal lung assist device (LAD) on a newborn piglet model, which is the closest representation of preterm human infants, is demonstrated. This LAD has high oxygenation capability in both pure oxygen and room air as the sweep gas. The respiratory distress that the newborn piglet is put under during experimentation, repeatedly and over a significant duration of time, is able to be relieved. These findings indicate that this LAD has a potential application as a biomimetic artificial placenta to support the respiratory needs of preterm neonates.

SELECTION OF CITATIONS
SEARCH DETAIL
...