Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.076
Filter
1.
Food Chem ; 454: 139802, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38797098

ABSTRACT

Direct surface analysis in ambient conditions provides information on the position and chemical composition of an object at the time of investigation. An angled sampling probe is developed in this work for direct analysis in real time (DART) ionization high-resolution mass spectrometry. The DART ion source and the interface were modified for improved surface resolution, increased ion transfer efficiency, as well as enabling two-dimensional surface scanning. The angled probe DART-MS system was used for investigating a variety of food samples including fruit peels, ginseng root, plant leaves and sections of radish. Abundant signals and distinct chemical profiles are obtained in seconds, and spatial distribution of different molecules across the sample surfaces can be observed. In addition, the developed system can quickly identify the chemical changes when the surfaces were treated. The method is capable of directly evaluating food sample surfaces with different shapes, hardness, and conditions, without any sample pretreatments.

2.
World J Oncol ; 15(3): 521-525, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38751705

ABSTRACT

Inflammatory myofibroblastic tumors (IMTs), which involve the proliferation of fibroblastic-myofibroblastic cells mixed with inflammatory infiltrates, are exceedingly rare in the extremities. There are no reported IMTs involving the sciatic nerve. This type of involvement may cause entrapment of the sciatic nerve, whose symptoms may mimic lumbar disc herniation (LDH), especially when it occurs in patients with lumbar degenerative disc disease. We describe the case of a 40-year-old male with lumbar degenerative disc disease accompanied by IMT involving the sciatic nerve whose symptoms mimicked LDH and posed a diagnostic challenge. We showed the course of the disease as well as the systematic imaging manifestations of IMTs involving the sciatic nerve and discussed their therapeutic management.

3.
Food Chem ; 451: 139507, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38696940

ABSTRACT

In the domain of infant nutrition, optimizing the absorption of crucial nutrients such as vitamin D3 (VD3) is paramount. This study harnessed dynamic-high-pressure microfluidization (DHPM) on soybean protein isolate (SPI) to engineer SPI-VD3 nanoparticles for fortifying yogurt. Characterized by notable binding affinity (Ka = 0.166 × 105 L·mol-1) at 80 MPa and significant surface hydrophobicity (H0 = 3494), these nanoparticles demonstrated promising attributes through molecular simulations. During simulated infant digestion, the 80 MPa DHPM-treated nanoparticles showcased an impressive 74.4% VD3 bioaccessibility, delineating the pivotal roles of hydrophobicity, bioaccessibility, and micellization dynamics. Noteworthy was their traversal through the gastrointestinal tract, illuminating bile salts' crucial function in facilitating VD3 re-encapsulation, thereby mitigating crystallization and augmenting absorption. Moreover, DHPM treatment imparted enhancements in nanoparticle integrity and hydrophobic properties, consequently amplifying VD3 bioavailability. This investigation underscores the potential of SPI-VD3 nanoparticles in bolstering VD3 absorption, thereby furnishing invaluable insights for tailored infant nutrition formulations.


Subject(s)
Biological Availability , Cholecalciferol , Digestion , Hydrophobic and Hydrophilic Interactions , Soybean Proteins , Soybean Proteins/chemistry , Soybean Proteins/metabolism , Humans , Cholecalciferol/chemistry , Cholecalciferol/metabolism , Infant , Models, Biological , Nanoparticles/chemistry , Nanoparticles/metabolism
4.
Lasers Med Sci ; 39(1): 132, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38758297

ABSTRACT

Photobiomodulation therapy (PBMT) was introduced as an ergogenic aid for sport performance in healthy individuals is still controversial. The main aim of this study is to assess the potential enhancements in muscle endurance and recovery from muscle strength and injuries mediated by PBMT among individuals exhibiting diverse activity levels. Randomized controlled trials (RCT) of PBMT interventions for healthy people (both trained and untrained individuals) exercising were searched (up to January 16, 2024) in four electronic databases: Web of Science, PubMed, Scopus and Embase. Primary outcome measures included muscle endurance, muscle strength and creatine kinase (CK) levels; secondary outcome measure included Lactate dehydrogenase (LDH) levels. Subgroup analyses based on physical activity levels were conducted for each outcome measure. Thirty-four RCTs were included based on the article inclusion and exclusion criteria. Statistical results showed that PBMT significantly improved muscle endurance (standardized mean difference [SMD] = 0.31, 95%CI 0.11, 0.51, p < 0.01), indicating a moderate effect size. It also facilitated the recovery of muscle strength (SMD = 0.24, 95%CI 0.10, 0.39, p < 0.01) and CK (mean difference [MD] = -77.56, 95%CI -112.67, -42.44, p < 0.01), indicating moderate and large effect sizes, respectively. Furthermore, pre-application of PBMT significantly improved muscle endurance, recovery of muscle strength and injuries in physically inactive individuals and athletes (p < 0.05), while there was no significant benefit for physically active individuals. Pre-application of PBMT improves muscle endurance and promotes recovery from muscle strength and injury (includes CK and LDH) in athletes and sedentary populations, indicating moderate to large effect sizes, but is ineffective in physically active populations. This may be due to the fact that physically active people engage in more resistance training, which leads to a decrease in the proportion of red muscle fibres, thus affecting photobiomodulation.


Subject(s)
Low-Level Light Therapy , Muscle Strength , Physical Endurance , Randomized Controlled Trials as Topic , Humans , Low-Level Light Therapy/methods , Muscle Strength/radiation effects , Muscle Strength/physiology , Physical Endurance/radiation effects , Physical Endurance/physiology , Exercise/physiology , Creatine Kinase/blood , Muscle, Skeletal/radiation effects , Muscle, Skeletal/physiology
5.
Biomaterials ; 308: 122550, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38581762

ABSTRACT

Immune checkpoint blockade therapy represented by programmed cell death ligand 1 (PD-L1) inhibitor for advanced renal carcinoma with an objective response rate (ORR) in patients is less than 20%. It is attributed to abundant tumoral vasculature with abnormal structure limiting effector T cell infiltration and drug penetration. We propose a bispecific fibrous glue (BFG) to regulate tumor immune and vascular microenvironments simultaneously. The bispecific precursor glue peptide-1 (pre-GP1) can penetrate tumor tissue deeply and self-assemble into BFG in the presence of neuropilin-1 (NRP-1) and PD-L1. The resultant fibrous glue is capable of normalizing tumoral vasculature as well as restricting immune escape. The pre-GP1 retains a 6-fold higher penetration depth than that of antibody in the multicellular spheroids (MCSs) model. It also shows remarkable tumor growth inhibition (TGI) from 19% to 61% in a murine advanced large tumor model compared to the clinical combination therapy. In addition, in the orthotopic renal tumor preclinical model, the lung metastatic nodules are reduced by 64% compared to the clinically used combination. This pre-GP1 provides a promising strategy to control the progression and metastasis of advanced renal carcinoma.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Animals , Kidney Neoplasms/pathology , Kidney Neoplasms/drug therapy , Kidney Neoplasms/therapy , Kidney Neoplasms/immunology , Humans , Mice , Carcinoma, Renal Cell/pathology , Carcinoma, Renal Cell/immunology , Carcinoma, Renal Cell/therapy , Carcinoma, Renal Cell/drug therapy , Cell Line, Tumor , Tumor Microenvironment/drug effects , Mice, Inbred BALB C , Female , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/metabolism
6.
Anal Chem ; 96(20): 7799-7816, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38598751
7.
Food Chem ; 449: 139197, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38581788

ABSTRACT

Abalone (Haliotis spp.) is a shellfish known for its exceptional nutritional value and significant economic worth. This study investigated the dynamic characteristics of non-volatile compounds over a year, including metabolites, lipids, nucleotides, and free amino acids (FAAs), which determined the nutritional quality and flavor of abalone. 174 metabolites and 371 lipids were identified and characterized, while 20 FAAs and 11 nucleotides were quantitatively assessed. These non-volatile compounds of abalone were fluctuated with months variation, which was consistent with the fluctuations of environmental factors, especially seawater temperature. Compared with seasonal variation, gender had less influence on these non-volatiles. June and July proved to be the optimal harvesting periods for abalone, with the levels of overall metabolites, lipids, FAAs, and nucleotides in abalone exhibiting a higher value in June and July over a year. Intriguingly, taurine covered 60% of the total FAAs and abalone could be used as dietary taurine supplementation.


Subject(s)
Amino Acids , Gastropoda , Metabolomics , Seasons , Shellfish , Animals , Gastropoda/chemistry , Gastropoda/metabolism , Shellfish/analysis , Amino Acids/metabolism , Amino Acids/analysis , Amino Acids/chemistry , Lipids/chemistry , Nutritive Value , Male , Female
8.
Analyst ; 149(11): 3140-3151, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38629585

ABSTRACT

Non-targeted analysis of high-resolution mass spectrometry (MS) can identify thousands of compounds, which also gives a huge challenge to their quantification. The aim of this study is to investigate the impact of mass spectrometry ionization efficiency on various compounds in food at different solvent ratios and to develop a predictive model for mass spectrometry ionization efficiency to enable non-targeted quantitative prediction of unknown compounds. This study covered 70 compounds in 14 different mobile phase ratio environments in positive ion mode to analyze the rules of the matrix effect. With the organic phase ratio from low to high, most compounds changed by 1.0 log units in log IE. The addition of formic acid enhanced the signal but also promoted the matrix effect, which often occurred in compounds with strong ionization capacity. It was speculated that the matrix effect was mainly in the form of competitive charge and charged droplet' gasification sites during MS detection. Subsequently, we present a log IE prediction method built using the COSMO-RS software and the artificial neural network (ANN) algorithm to address this difficulty and overcome the shortcomings of previous models, which always ignore the matrix effect. This model was developed following the principles of QSAR modeling recommended by the Organization for Economic Cooperation and Development (OECD). Furthermore, we validated this approach by predicting the log IE of 70 compounds, including those not involved in the log IE model development. The results presented demonstrate that the method we put forward has an excellent prediction accuracy for log IE (R2pred = 0.880), which means that it has the potential to predict the log IE of new compounds without authentic standards.

9.
Rapid Commun Mass Spectrom ; 38(12): e9754, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38605420

ABSTRACT

RATIONALE: In clinical diagnosis of liver injury, which is an important health concern, serum aminotransferase assays have been the go-to method used worldwide. However, the measurement of serum enzyme activity has limitations, including inadequate disease specificity and enzyme specificity. METHODS: With the high selectivity and specificity provided by nano liquid chromatography-tandem mass spectrometry (LC/MS/MS), this work describes a method for the simultaneous determination of six proteins in liver that can be potentially used as biomarkers for liver injury: glutamic-pyruvic transaminase 1 (GPT1), glutamic oxaloacetic transaminase 1 (GOT1), methionine adenosyl transferase 1A (MAT1A), glutathione peroxidase 1 (GPX1), cytokeratin 18 (KRT18) and apolipoprotein E (APOE). RESULTS: In validation, the method was shown to have good selectivity and sensitivity (limits of detection at pg/mL level). The analytical method revealed that, compared with normal mice, in carbon tetrachloride-induced acute liver injury mice, liver MAT1A and GPX1 were significantly lower (p < 0.01 and p < 0.05, respectively), KRT18 was significantly higher (p < 0.05) and APOE and GPT1 were marginally significantly lower (p between 0.05 and 0.1). This is the first work reporting the absolute contents of GPT1, GOT1, MAT1A, GPX1 and KRT18 proteins based on LC/MS. CONCLUSIONS: The proposed method provides a basis for establishing more specific diagnostic indicators of liver injury.


Subject(s)
Liver , Tandem Mass Spectrometry , Animals , Mice , Tandem Mass Spectrometry/methods , Chromatography, Liquid/methods , Liver/metabolism , Apolipoproteins E/metabolism
10.
Small ; : e2310416, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38660815

ABSTRACT

Synergistic therapy has shown greater advantages compared with monotherapy. However, the complex multiple-administration plan and potential side effects limit its clinical application. A transformable specific-responsive peptide (TSRP) is utilized to one-step achieve synergistic therapy integrating anti-tumor, anti-angiogenesis and immune response. The TSRP is composed of: i) Recognition unit could specifically target and inhibit the biological function of FGFR-1; ii) Transformable unit could self-assembly and trigger nanofibers formation; iii) Reactive unit could specifically cleaved by MMP-2/9 in tumor micro-environment; iv) Immune unit, stimulate the release of immune cells when LTX-315 (Immune-associated oncolytic peptide) exposed. Once its binding to FGFR-1, the TSRP could cleaved by MMP-2/9 to form the nanofibers on the cell membrane, with a retention time of up to 12 h. Through suppressing the phosphorylation levels of ERK 1/2 and PI3K/AKT signaling pathways downstream of FGFR-1, the TSRP significant inhibit the growth of tumor cells and the formation of angioginesis. Furthermore, LTX-315 is exposed after TSRP cleavage, resulting in Calreticulin activation and CD8+ T cells infiltration. All above processes together contribute to the increasing survival rate of tumor-bearing mice by nearly 4-folds. This work presented a unique design for the biological application of one-step synergistic therapy of bladder cancer.

11.
Front Surg ; 11: 1371641, 2024.
Article in English | MEDLINE | ID: mdl-38425375

ABSTRACT

[This corrects the article DOI: 10.3389/fsurg.2022.939591.].

12.
Natl Sci Rev ; 11(4): nwae028, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38425424

ABSTRACT

Mitochondriopathy inspired adenosine triphosphate (ATP) depletions have been recognized as a powerful way for controlling tumor growth. Nevertheless, selective sequestration or exhaustion of ATP under complex biological environments remains a prodigious challenge. Harnessing the advantages of in vivo self-assembled nanomaterials, we designed an Intracellular ATP Sequestration (IAS) system to specifically construct nanofibrous nanostructures on the surface of tumor nuclei with exposed ATP binding sites, leading to highly efficient suppression of bladder cancer by induction of mitochondriopathy-like damages. Briefly, the reported transformable nucleopeptide (NLS-FF-T) self-assembled into nuclear-targeted nanoparticles with ATP binding sites encapsulated inside under aqueous conditions. By interaction with KPNA2, the NLS-FF-T transformed into a nanofibrous-based ATP trapper on the surface of tumor nuclei, which prevented the production of intracellular energy. As a result, multiple bladder tumor cell lines (T24, EJ and RT-112) revealed that the half-maximal inhibitory concentration (IC50) of NLS-FF-T was reduced by approximately 4-fold when compared to NLS-T. Following intravenous administration, NLS-FF-T was found to be dose-dependently accumulated at the tumor site of T24 xenograft mice. More significantly, this IAS system exhibited an extremely antitumor efficacy according to the deterioration of T24 tumors and simultaneously prolonged the overall survival of T24 orthotopic xenograft mice. Together, our findings clearly demonstrated the therapeutic advantages of intracellular ATP sequestration-induced mitochondriopathy-like damages, which provides a potential treatment strategy for malignancies.

13.
Electrophoresis ; 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38506142

ABSTRACT

Numerical modeling of Taylor dispersion analysis (TDA) was performed using COMSOL Multiphysics to facilitate better and faster optimization of the experimental conditions. Parameters, such as pressure, electric field, diameter, and length of capillary on the TDA conditions, were examined for particles with hydrodynamic radius (Rh ) of 2.5-250 Å. The simulations were conducted using 25, 50, and 100 cm length tubes with diameters of 25, 50, and 100 µm. It was shown that particles with larger diffusion coefficients gave more accurate results at higher velocities, and in longer and wider columns; particles with smaller diffusion coefficients gave more accurate results at smaller velocities, and in shorter and thinner columns. Moreover, the effect of electric field on the validity and the applicability of TDA was studied using TDA in conjunction with capillary electrophoresis. Diffusion coefficients were obtained using a pressure and the TDA equation and compared with those obtained with a pressure in combination of an electric field for fluorescein, FD4, FD20, FD70, and FD500. We found that TDA can be used with the presence of moderate electrophoretic migration and electroosmotic flow, when appropriate conditions were met.

14.
Food Chem ; 447: 138949, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38484544

ABSTRACT

Abalone, a highly sought-after aquatic product, possesses significant nutritional value. In this study, the relationship between aroma characteristics and lipid profile of abalone (Haliotis discus hannai) during seasonal fluctuation and thermal processing were profiled via volatolomics and lipidomics. 46 aroma compounds and 371 lipids were identified by HS-SPME-GC-MS and UPLC-Q-Extractive Orbitrap-MS, respectively. Multivariate statistical analysis indicated that carbonyls (aldehydes and ketones) and alcohols were the characteristic aroma compounds of abalone. The fluctuations in the aroma compound and lipid composition of abalone were consistent with the seasonal variation, especially seawater temperature. In addition, based on the correlation analysis, it was found that carbonyls (aldehydes and ketones) and alcohols had a positive correlation with phospholipids (lysophosphatidylethanolamines and lysophosphatidylcholines), while a negative correlation was observed with fatty acyls. These findings suggested that the effect of seasonal variations on the aroma changes of abalone might achieved by modulating the lipids composition of abalone.


Subject(s)
Gastropoda , Odorants , Animals , Seasons , Phospholipids , Aldehydes , Ketones
15.
Food Chem ; 447: 139004, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38492304

ABSTRACT

To address the challenges of low recovery, prolonged extraction times, and environmental pollution caused by toxic solvents in traditional extraction methods, magnetic bead-enhanced deep eutectic solvent mechanochemical extraction was developed for extracting natural products from orange peels. The extraction efficiencies of deep eutectic solvents were experimentally evaluated, and theoretical methods were used to guide solvent selection. Choline chloride-ethylene glycol demonstrated the highest efficiency under the optimal extraction conditions: a molar ratio of 1:2, no water content, a solid-liquid ratio of 0.08 g/mL, and an extraction time of 60 s. The synergy between the deep eutectic solvent and magnetic bead-enhanced the mechanochemical extraction efficiencies. The study also examined the effects of different magnetic bead types and orange peel powder particle sizes on extraction efficiency, finding that a 0.11 mm particle size combined with CIP@SiO2 yielded the best results. Overall, this study holds promise as an environmentally friendly and efficient extraction method.


Subject(s)
Citrus sinensis , Deep Eutectic Solvents , Silicon Dioxide , Solvents/chemistry , Magnetic Phenomena
16.
Food Chem ; 448: 139030, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38531301

ABSTRACT

This study presents a novel approach using polyol-based proliposome to produce marine phospholipids nanoliposomes. Proliposomes were formulated by blending glycerol with phospholipids across varying mass ratios (2:1 to 1:10) at room temperature. Analysis employing polarized light microscopy, FTIR, and DSC revealed that glycerol disrupted the stacked acyl groups within phospholipids, lowering the phase transition temperature (Tm). Krill oil phospholipids (KOP) proliposomes exhibited superior performance in nanoliposomes formation, with a mean diameter of 125.60 ± 3.97 nm, attributed to the decreased Tm (-7.64 and 7.00 °C) compared to soybean phospholipids, along with a correspondingly higher absolute zeta potential (-39.77 ± 1.18 mV). The resulting KOP proliposomes demonstrated liposomes formation stability over six months and under various environmental stresses (dilution, thermal, ionic strength, pH), coupled with in vitro absorption exceeding 90 %. This investigation elucidates the mechanism behind glycerol-formulated proliposomes and proposes innovative strategies for scalable, solvent-free nanoliposome production with implications for functional foods and pharmaceutical applications.


Subject(s)
Glycerol , Liposomes , Nanoparticles , Phospholipids , Liposomes/chemistry , Glycerol/chemistry , Phospholipids/chemistry , Animals , Nanoparticles/chemistry , Particle Size , Euphausiacea/chemistry
17.
J Phys Condens Matter ; 36(25)2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38457834

ABSTRACT

A variety of distinct anisotropic exchange interactions commonly exist in one magnetic material due to complex crystal, magnetic and orbital symmetries. Here we investigate the effects of multiple anisotropic exchange interactions on topological magnon in a honeycomb ferromagnet, and find a chirality-selective topological magnon phase transition induced by a complicated interplay of Dzyaloshinsky-Moriya interaction and pseudo-dipolar interaction, accompanied by the bulk gap close and reopen with chiral inversion. Moreover, this novel topological phase transition involves band inversion at high symmetry pointsKandK', which can be regarded as a pseudo-orbital reversal, i.e. magnon valley degree of freedom, implying a new manipulation corresponding to a sign change of the magnon thermal Hall conductivity. Indeed, it can be realized in 4dor 5dcorrelated materials with both spin-orbit coupling and orbital localized states, such as iridates and ruthenates,etc.This novel regulation may have potential applications on magnon devices and topological magnonics.

18.
Zhongguo Zhong Yao Za Zhi ; 49(2): 361-369, 2024 Jan.
Article in Chinese | MEDLINE | ID: mdl-38403312

ABSTRACT

The 4-coumarate: CoA ligase(4CL) is a key enzyme in the upstream pathway of phenylpropanoids such as flavonoids, soluble phenolic esters, lignans, and lignins in plants. In this study, 13 4CL family members of Arabidopsis thaliana were used as reference sequences to identify the 4CL gene family candidate members of Isatis indigotica from the reported I. indigotica genome. Further bioinformatics analysis and analysis of the expression pattern of 4CL genes and the accumulation pattern of flavonoids were carried out. Thirteen 4CL genes were obtained, named Ii4CL1-Ii4CL13, which were distributed on chromosomes 1, 2, 3, 4, and 6. The analysis of the gene structure and conserved structural domains revealed the intron number of I. indigotica 4CL genes was between 1 and 12 and the protein structural domains were highly conserved. Cis-acting element analysis showed that there were multiple response elements in the promoter sequence of I. indigotica 4CL gene family, and jasmonic acid had the largest number of reaction elements. The collinearity analysis showed that there was a close relationship between the 4CL gene family members of I. indigotica and A. thaliana. As revealed by qPCR results, the expression analysis of the 4CL gene family showed that 10 4CL genes had higher expression levels in the aboveground part of I. indigotica. The content assay of flavonoids in different parts of I. indigotica showed that flavonoids were mainly accumulated in the aboveground part of plants. This study provides a basis for further investigating the roles of the 4CL gene family involved in the biosynthesis of flavonoids in I. indigotica.


Subject(s)
Isatis , Ligases , Ligases/genetics , Isatis/genetics , Promoter Regions, Genetic , Plants/metabolism , Flavonoids , Coenzyme A Ligases/genetics , Coenzyme A Ligases/chemistry , Coenzyme A Ligases/metabolism
19.
Food Chem ; 444: 138583, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38309082

ABSTRACT

Antarctic krill oil (AKO) is reddish-orange in color but undergoes changes during storage. To investigate the color deterioration and potential mechanisms involved, the changes in color, endogenous components (astaxanthin, fatty acids, and phospholipids), and reaction products (aldehydes, α-dicarbonyl compounds, and pyrroles) of AKO upon storage were determined. Although the visual color of AKO tended to darken upon storage, the colorimetric analysis and ultraviolet-visible spectrum analysis both indicated a fading in red and yellow due to the oxidative degradation of astaxanthin. During storage of AKO, lipid oxidation led to the formation of carbonyl compounds such as aldehydes and α-dicarbonyls. In addition, phosphatidylethanolamines (PEs) exhibited a faster loss rate than phosphatidylcholines. Moreover, hydrophobic pyrroles, the Maillard-like reaction products associated with primary amine groups in PEs accumulated. Therefore, it is suggested that the Maillard-like reaction between PEs and carbonyl compounds formed by lipid oxidation contributed to color darkening of AKO during storage.


Subject(s)
Euphausiacea , Animals , Euphausiacea/chemistry , Oils/chemistry , Aldehydes , Pyrroles , Xanthophylls
20.
J Robot Surg ; 18(1): 88, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38386236

ABSTRACT

Transoral vestibular robotic thyroidectomy can really make the patient's body surface free of scar. This study aimed to compare the surgical and patient-related outcomes between the transoral vestibular robotic thyroidectomy and traditional low-collar incision thyroidectomy. The clinical data of 120 patients underwent transoral vestibular robotic thyroidectomy (TOVRT) or traditional low-collar incision thyroidectomy (TLCIT) were collected from May 2020 to October 2021. Propensity score matching analysis was used to minimize selection bias. All these patients were diagnosed with papillary thyroid carcinoma (PTC) through ultrasound-guided fine-needle aspiration prior to surgical intervention and surgical plan was tailored for each patient. An intraoperative recurrent laryngeal nerve (RLN) detection system was used in all patients, whose RLNs were identified and protected. We performed transoral vestibular robotic thyroidectomy with three intraoral incisions. Additional right axillary fold incisions were adopted occasionally to enhance fine reverse traction of tissue for radical tumor dissection. Clinical data including gender, age, tumor size, BMI, operation time, postoperative drainage volume and time, pain score, postoperative length of stay (LOS),number of lymph nodes removed, complications, and medical expense were observed and analyzed. Propensity score matching was used for 1:1 matching between the TOVRT group and the TLCIT group. All these patients accepted total thyroidectomy(or lobectomy) plus central lymph node dissection and all suffered from PTC confirmed by postoperative pathology. No conversion to open surgery happened in TOVRT group. The operative time of TOVRT group was longer than that of TLCIT group (P < 0.05). The postoperative drainage volume of TOVRT group was more than that of TLCIT group (P < 0.05). The drainage tube placement time of TOVRT group were longer than that of TLCIT group (P < 0.05). Significant differences were also found in intraoperative bleeding volume, pain score and medical expense between the two groups (P < 0.05). The incidence of perioperative common complications such as hypoparathyroidism and vocal cord paralysis in the two groups was almost identical (P > 0.05). However, there were some specific complications such as surgical area infection (one case), skin burn (one case), oral tear (two cases), and paresthesia of the lower lip and the chin (two cases) were found in TOVRT group. Obviously, the postoperative cosmetic effect of the TOVRT group was better than TLCIT group (P < 0.05). TOVRT is safe and feasible for low to moderate-risk PTC patients and is a potential alternative for patients who require no scar on their neck. Patients accepted TOVRT can get more satisfaction and have less psychologic injury caused by surgery.


Subject(s)
Neoplasms , Robotic Surgical Procedures , Humans , Thyroidectomy/adverse effects , Robotic Surgical Procedures/methods , Drainage , Cicatrix , Pain
SELECTION OF CITATIONS
SEARCH DETAIL
...