Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Bioconjug Chem ; 33(3): 530-540, 2022 03 16.
Article in English | MEDLINE | ID: mdl-35230093

ABSTRACT

Because positron emission tomography (PET) and optical imaging are very complementary, the combination of these two imaging modalities is very enticing in the oncology field. Such bimodal imaging generally relies on imaging agents bearing two different imaging reporters. In the bioconjugation field, this is mainly performed by successive random conjugations of the two reporters on the protein vector, but these random conjugations can alter the vector properties. In this study, we aimed at abrogating the heterogeneity of the bimodal imaging immunoconjugate and mitigating the impact of multiple random conjugations. A trivalent platform bearing a DFO chelator for 89Zr labeling, a NIR fluorophore, IRDye800CW, and a bioconjugation handle was synthesized. This bimodal probe was site-specifically grafted to trastuzumab via glycan engineering. This new bimodal immunoconjugate was then investigated in terms of radiochemistry, in vitro and in vivo, and compared to the clinically relevant random equivalent. In vitro and in vivo, our strategy provides several improvements over the current clinical standard. The combination of site-specific conjugation with the monomolecular platform reduced the heterogeneity of the final immunoconjugate, improved the resistance of the fluorophore toward radiobleaching, and reduced the nonspecific uptake in the spleen and liver compared to the standard random immunoconjugate. To conclude, the strategy developed is very promising for the synthesis of better defined dual-labeled immunoconjugates, although there is still room for improvement. Importantly, this conjugation strategy is highly modular and could be used for the synthesis of a wide range of dual-labeled immunoconjugates.


Subject(s)
Immunoconjugates , Neoplasms , Cell Line, Tumor , Fluorescent Dyes/chemistry , Humans , Immunoconjugates/chemistry , Positron-Emission Tomography/methods , Radioisotopes/chemistry , Tissue Distribution , Zirconium/chemistry
2.
Int J Cancer ; 148(12): 3019-3031, 2021 06 15.
Article in English | MEDLINE | ID: mdl-33506516

ABSTRACT

The presence of an inactivating heat shock protein 110 (HSP110) mutation in colorectal cancers has been correlated with an excellent prognosis and with the ability of HSP110 to favor the formation of tolerogenic (M2-like) macrophages. These clinical and experimental results suggest a potentially powerful new strategy against colorectal cancer: the inhibition of HSP110. In this work, as an alternative to neutralizing antibodies, Nanofitins (scaffold ~7 kDa proteins) targeting HSP110 were isolated from the screening of a synthetic Nanofitin library, and their capacity to bind (immunoprecipitation, biolayer interferometry) and to inhibit HSP110 was analyzed in vitro and in vivo. Three Nanofitins were found to inhibit HSP110 chaperone activity. Interestingly, they share a high degree of homology in their variable domain and target the peptide-binding domain of HSP110. In vitro, they inhibited the ability of HSP110 to favor M2-like macrophages. The Nanofitin with the highest affinity, A-C2, was studied in the CT26 colorectal cancer mice model. Our PET/scan experiments demonstrate that A-C2 may be localized within the tumor area, in accordance with the reported HSP110 abundance in the tumor microenvironment. A-C2 treatment reduced tumor growth and was associated with an increase in immune cells infiltrating the tumor and particularly cytotoxic macrophages. These results were confirmed in a chicken chorioallantoic membrane tumor model. Finally, we showed the complementarity between A-C2 and an anti-PD-L1 strategy in the in vivo and in ovo tumor models. Overall, Nanofitins appear to be promising new immunotherapeutic lead compounds.


Subject(s)
Colorectal Neoplasms/drug therapy , HSP110 Heat-Shock Proteins/antagonists & inhibitors , Macrophages/metabolism , Peptide Fragments/administration & dosage , Animals , Cell Line, Tumor , Colorectal Neoplasms/diagnostic imaging , Colorectal Neoplasms/metabolism , Female , Humans , Lymphocytes, Tumor-Infiltrating/drug effects , Macrophages/drug effects , Mice , Peptide Fragments/chemistry , Peptide Fragments/pharmacology , Peptide Library , Positron-Emission Tomography , Tumor Microenvironment/drug effects , Xenograft Model Antitumor Assays
4.
Eur J Nucl Med Mol Imaging ; 46(9): 1966-1977, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31161258

ABSTRACT

PURPOSE: Currently, the most commonly used chelator for labelling antibodies with 89Zr for immunoPET is desferrioxamine B (DFO). However, preclinical studies have shown that the limited in vivo stability of the 89Zr-DFO complex results in release of 89Zr, which accumulates in mineral bone. Here we report a novel chelator DFOcyclo*, a preorganized extended DFO derivative that enables octacoordination of the 89Zr radiometal. The aim was to compare the in vitro and in vivo stability of [89Zr]Zr-DFOcyclo*, [89Zr]Zr-DFO* and [89Zr]Zr-DFO. METHODS: The stability of 89Zr-labelled chelators alone and after conjugation to trastuzumab was evaluated in human plasma and PBS, and in the presence of excess EDTA or DFO. The immunoreactive fraction, IC50, and internalization rate of the conjugates were evaluated using HER2-expressing SKOV-3 cells. The in vivo distribution was investigated in mice with subcutaneous HER2+ SKOV-3 or HER2- MDA-MB-231 xenografts by PET/CT imaging and quantitative ex vivo tissue analyses 7 days after injection. RESULTS: 89Zr-labelled DFO, DFO* and DFOcyclo* were stable in human plasma for up to 7 days. In competition with EDTA, DFO* and DFOcyclo* showed higher stability than DFO. In competition with excess DFO, DFOcyclo*-trastuzumab was significantly more stable than the corresponding DFO and DFO* conjugates (p < 0.001). Cell binding and internalization were similar for the three conjugates. In in vivo studies, HER2+ SKOV-3 tumour-bearing mice showed significantly lower bone uptake (p < 0.001) 168 h after injection with [89Zr]Zr-DFOcyclo*-trastuzumab (femur 1.5 ± 0.3%ID/g, knee 2.1 ± 0.4%ID/g) or [89Zr]Zr-DFO*-trastuzumab (femur 2.0 ± 0.3%ID/g, knee 2.68 ± 0.4%ID/g) than after injection with [89Zr]Zr-DFO-trastuzumab (femur 4.5 ± 0.6%ID/g, knee 7.8 ± 0.6%ID/g). Blood levels, tumour uptake and uptake in other organs were not significantly different at 168 h after injection. HER2- MDA-MB-231 tumour-bearing mice showed significantly lower tumour uptake (p < 0.001) after injection with [89Zr]Zr-DFOcyclo*-trastuzumab (16.2 ± 10.1%ID/g) and [89Zr]Zr-DFO-trastuzumab (19.6 ± 3.2%ID/g) than HER2+ SKOV-3 tumour-bearing mice (72.1 ± 14.6%ID/g and 93.1 ± 20.9%ID/g, respectively), while bone uptake was similar. CONCLUSION: 89Zr-labelled DFOcyclo* and DFOcyclo*-trastuzumab showed higher in vitro and in vivo stability than the current commonly used 89Zr-DFO-trastuzumab. DFOcyclo* is a promising candidate to become the new clinically used standard chelator for 89Zr immunoPET.


Subject(s)
Deferoxamine/chemistry , Positron Emission Tomography Computed Tomography/methods , Radioisotopes/chemistry , Zirconium/chemistry , Animals , Cell Line, Tumor , Cell Transformation, Neoplastic , Deferoxamine/pharmacokinetics , Female , Humans , Mice , Tissue Distribution
5.
J Med Chem ; 61(18): 8402-8416, 2018 09 27.
Article in English | MEDLINE | ID: mdl-30153009

ABSTRACT

Rhinoviruses (RVs) have been linked to exacerbations of many pulmonary diseases, thus increasing morbidity and/or mortality in subjects at risk. Unfortunately, the wide variety of RV genotypes constitutes a major hindrance for the development of Rhinovirus replication inhibitors. In the current investigation, we have developed a novel series of pyrazole derivatives that potently inhibit the Rhinovirus replication. Compounds 10e and 10h behave as early stage inhibitors of Rhinovirus infection with a broad-spectrum activity against RV-A and RV-B species (EC50 < 0.1 µM). We also evaluate the dynamics of the emerging resistance of these promising compounds and their in vitro genotoxicity. Molecular docking experiments shed light on the pharmacophoric elements interacting with residues of the drug-binding pocket.


Subject(s)
Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Drug Design , Enterovirus Infections/drug therapy , Pyrazoles/chemistry , Rhinovirus/drug effects , Virus Replication/drug effects , Animals , Enterovirus Infections/virology , HeLa Cells , Humans , Male , Micronucleus Tests , Models, Molecular , Molecular Structure , Protein Conformation , Rats , Rats, Sprague-Dawley , Rhinovirus/genetics , Structure-Activity Relationship
6.
Eur J Med Chem ; 140: 528-541, 2017 Nov 10.
Article in English | MEDLINE | ID: mdl-28987610

ABSTRACT

Rhinovirus (RV), member of the Enterovirus genus, is known to be involved in more than half of the common colds. Through advances in molecular biology, rhinoviruses have also been associated with exacerbations of chronic pulmonary diseases (e.g. asthma, chronic obstructive pulmonary disease (COPD) and cystic fibrosis). In the current investigation, we develop a novel series of 4,5-dimethoxybenzyl derivatives that potently inhibits rhinovirus replication. Compound (S)-7f blocks RV-B14 replication with an EC50 value of 0.25 µM and shows a low toxicity in HeLa cells (CC50 > 271 µM). Enantioseparation followed by an absolute configuration determination by a Mosher's method revealed the interest of enantiopure compounds. Molecular docking studies permitted the identification of key biological interactions within the drug-binding pocket and an in silico drug-like study revealed a good potential for the development of these derivatives.


Subject(s)
Antiviral Agents/pharmacology , Heterocyclic Compounds/pharmacology , Antiviral Agents/chemistry , Circular Dichroism , HeLa Cells , Heterocyclic Compounds/chemistry , Humans , Magnetic Resonance Spectroscopy , Molecular Docking Simulation , Rhinovirus/drug effects , Spectrometry, Mass, Electrospray Ionization , Stereoisomerism , Structure-Activity Relationship
7.
ACS Chem Neurosci ; 7(7): 995-1003, 2016 07 20.
Article in English | MEDLINE | ID: mdl-27225823

ABSTRACT

The formation of tau aggregates is strongly linked to the neurodegenerative process in tauopathies such as Alzheimer's disease (AD). Yet only a few molecules have shown to efficiently prevent the in vitro formation of those aggregates, and the identification of such molecules is still an ongoing interest in a therapeutic context. Herein, we report the in vitro evaluation of a series of aurones against the fibrillation of the tau-derived hexapeptide AcPHF6 model. Using thioflavin T-based fluorescence assays, circular dichroism and atomic force microscopy, we showed that aurones are capable of efficiently interacting with the tau-derived hexapeptide. Importantly, this work reveals a significant activity observed for polyhydroxylated aurones. In particular, aurone 23 displayed an almost complete inhibition of fibers formation as shown by AFM at a peptide/inhibitor 1:1 ratio. It is similar to that observed for myricetin, a polyphenolic compound, well-known to prevent the in vitro elongation of tau fibers. Moreover, a tetrahydroxylated isomer, compound 24, was shown as a chemical probe of fibers rather than an inhibitor. Consequently, these results highlight aurones as a new promising scaffold to interfere with tau aggregation for both treatment and diagnosis of AD.


Subject(s)
Benzofurans/chemistry , Benzofurans/chemical synthesis , Models, Chemical , Neurofibrillary Tangles/metabolism , Peptides/chemical synthesis , tau Proteins/chemistry , Circular Dichroism/methods , Fluorescence , Humans , Microscopy, Atomic Force , Neurofibrillary Tangles/chemistry , Peptides/chemistry , tau Proteins/metabolism
8.
Eur J Med Chem ; 115: 453-62, 2016 Jun 10.
Article in English | MEDLINE | ID: mdl-27049678

ABSTRACT

Human rhinoviruses (HRV) are the predominant cause of common colds and flu-like illnesses, but are also responsible for virus-induced exacerbations of asthma and chronic obstructive pulmonary disease. However, to date, no drug has been approved yet for clinical use. In this study, we present the results of the structure-based lead optimization of a class of new small-molecule inhibitors that we previously reported to bind into the pocket beneath the canyon of the VP1 protein. A small series of analogues that we designed based on the available structure and interaction data were synthesized and evaluated for their potency to inhibit the replication of HRV serotype 14. 2-(4,5-Dimethoxy-2-nitrophenyl)-1-(4-(pyridin-4-yl)phenyl)ethanol (3v) was found to be a potent inhibitor exhibiting micromolar activity (EC50 = 3.4 ± 1.0 µM) with a toxicity for HeLa cells that was significantly lower than that of our previous hit (LPCRW_0005, CC50 = 104.0 ± 22.2 µM; 3v, CC50 > 263 µM).


Subject(s)
Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Benzene Derivatives/chemistry , Benzene Derivatives/pharmacology , Rhinovirus/chemistry , HeLa Cells , Humans , Models, Molecular
SELECTION OF CITATIONS
SEARCH DETAIL
...