Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
Add more filters










Publication year range
1.
Cardiovasc Res ; 120(5): 461-475, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38428029

ABSTRACT

Pathologic cardiac hypertrophy is a common consequence of many cardiovascular diseases, including aortic stenosis (AS). AS is known to increase the pressure load of the left ventricle, causing a compensative response of the cardiac muscle, which progressively will lead to dilation and heart failure. At a cellular level, this corresponds to a considerable increase in the size of cardiomyocytes, known as cardiomyocyte hypertrophy, while their proliferation capacity is attenuated upon the first developmental stages. Cardiomyocytes, in order to cope with the increased workload (overload), suffer alterations in their morphology, nuclear content, energy metabolism, intracellular homeostatic mechanisms, contractile activity, and cell death mechanisms. Moreover, modifications in the cardiomyocyte niche, involving inflammation, immune infiltration, fibrosis, and angiogenesis, contribute to the subsequent events of a pathologic hypertrophic response. Considering the emerging need for a better understanding of the condition and treatment improvement, as the only available treatment option of AS consists of surgical interventions at a late stage of the disease, when the cardiac muscle state is irreversible, large animal models have been developed to mimic the human condition, to the greatest extend. Smaller animal models lack physiological, cellular and molecular mechanisms that sufficiently resemblance humans and in vitro techniques yet fail to provide adequate complexity. Animals, such as the ferret (Mustello purtorius furo), lapine (rabbit, Oryctolagus cunigulus), feline (cat, Felis catus), canine (dog, Canis lupus familiaris), ovine (sheep, Ovis aries), and porcine (pig, Sus scrofa), have contributed to research by elucidating implicated cellular and molecular mechanisms of the condition. Essential discoveries of each model are reported and discussed briefly in this review. Results of large animal experimentation could further be interpreted aiming at prevention of the disease progress or, alternatively, at regression of the implicated pathologic mechanisms to a physiologic state. This review summarizes the important aspects of the pathophysiology of LV hypertrophy and the applied surgical large animal models that currently better mimic the condition.


Subject(s)
Aortic Valve Stenosis , Hypertrophy, Left Ventricular , Ventricular Remodeling , Animals , Humans , Aortic Valve Stenosis/physiopathology , Aortic Valve Stenosis/pathology , Aortic Valve Stenosis/metabolism , Disease Models, Animal , Hypertrophy, Left Ventricular/physiopathology , Hypertrophy, Left Ventricular/metabolism , Hypertrophy, Left Ventricular/pathology , Myocytes, Cardiac/pathology , Myocytes, Cardiac/metabolism , Species Specificity , Ventricular Function, Left , Ventricular Pressure
2.
J Vis Exp ; (200)2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37930007

ABSTRACT

Large animal models of heart failure play an essential role in the development of new therapeutic interventions due to their size and physiological similarities to humans. Efforts have been dedicated to creating a model of pressure-overload induced heart failure, and ascending aortic banding while still supra-coronary and not a perfect mimic of aortic stenosis in humans, closely resembling the human condition. The purpose of this study is to demonstrate a minimally invasive approach to induce left ventricular pressure overload by placing an aortic band, precisely calibrated with percutaneously introduced high-fidelity pressure sensors. This method represents a refinement of the surgical procedure (3Rs), resulting in homogenous trans-stenotic gradients and reduced intragroup variability. Additionally, it enables swift and uneventful animal recovery, leading to minimal mortality rates. Throughout the study, animals were followed for up to 2 months after surgery, employing transthoracic echocardiography and pressure-volume loop analysis. However, longer follow-up periods can be achieved if desired. This large animal model proves valuable for testing new drugs, particularly those targeting hypertrophy and the structural and functional alterations associated with left ventricular pressure overload.


Subject(s)
Aortic Valve Stenosis , Heart Failure , Humans , Animals , Swine , Heart , Heart Failure/etiology , Aortic Valve Stenosis/surgery , Echocardiography , Aorta/surgery , Hypertrophy, Left Ventricular , Disease Models, Animal
3.
Mol Ther ; 31(6): 1807-1828, 2023 06 07.
Article in English | MEDLINE | ID: mdl-37073128

ABSTRACT

While it is experimentally supported that impaired myocardial vascularization contributes to a mismatch between myocardial oxygen demand and supply, a mechanistic basis for disruption of coordinated tissue growth and angiogenesis in heart failure remains poorly understood. Silencing strategies that impair microRNA biogenesis have firmly implicated microRNAs in the regulation of angiogenesis, and individual microRNAs prove to be crucial in developmental or tumor angiogenesis. A high-throughput functional screening for the analysis of a whole-genome microRNA silencing library with regard to their phenotypic effect on endothelial cell proliferation as a key parameter, revealed several anti- and pro-proliferative microRNAs. Among those was miR-216a, a pro-angiogenic microRNA which is enriched in cardiac microvascular endothelial cells and reduced in expression under cardiac stress conditions. miR-216a null mice display dramatic cardiac phenotypes related to impaired myocardial vascularization and unbalanced autophagy and inflammation, supporting a model where microRNA regulation of microvascularization impacts the cardiac response to stress.


Subject(s)
Heart Failure , MicroRNAs , Animals , Mice , Endothelial Cells/metabolism , Heart Failure/metabolism , MicroRNAs/metabolism , Myocardium/metabolism , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/metabolism , Neovascularization, Physiologic/genetics
5.
Cells ; 11(11)2022 05 31.
Article in English | MEDLINE | ID: mdl-35681500

ABSTRACT

Cardiovascular diseases are a major health problem, and long-term survival for people diagnosed with heart failure is, still, unrealistic. Pathological cardiac hypertrophy largely contributes to morbidity and mortality, as effective therapeutic approaches are lacking. Non-coding RNAs (ncRNAs) arise as active regulators of the signaling pathways and mechanisms that govern this pathology, and their therapeutic potential has received great attention in the last decades. Preclinical studies in large animal models have been successful in ameliorating cardiac hypertrophy, and an antisense drug for the treatment of heart failure has, already, entered clinical trials. In this review, we provide an overview of the molecular mechanisms underlying cardiac hypertrophy, the involvement of ncRNAs, and the current therapeutic landscape of oligonucleotides targeting these regulators. Strategies to improve the delivery of such therapeutics and overcome the actual challenges are, also, defined and discussed. With the fast advance in the improvement of oligonucleotide drug delivery, the inclusion of ncRNAs-targeting therapies for cardiac hypertrophy seems, increasingly, a closer reality.


Subject(s)
Cardiovascular Diseases , Heart Failure , Animals , Cardiomegaly/drug therapy , Cardiomegaly/genetics , Cardiomegaly/metabolism , Heart Failure/drug therapy , Heart Failure/genetics , Humans , RNA, Untranslated/genetics , RNA, Untranslated/metabolism , Signal Transduction
6.
Mol Ther ; 30(6): 2257-2273, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35278675

ABSTRACT

As mediators of intercellular communication, extracellular vesicles containing molecular cargo, such as microRNAs, are secreted by cells and taken up by recipient cells to influence their cellular phenotype and function. Here we report that cardiac stress-induced differential microRNA content, with miR-200c-3p being one of the most enriched, in cardiomyocyte-derived extracellular vesicles mediates functional cross-talk with endothelial cells. Silencing of miR-200c-3p in mice subjected to chronic increased cardiac pressure overload resulted in attenuated hypertrophy, smaller fibrotic areas, higher capillary density, and preserved cardiac ejection fraction. We were able to maximally rescue microvascular and cardiac function with very low doses of antagomir, which specifically silences miR-200c-3p expression in non-myocyte cells. Our results reveal vesicle transfer of miR-200c-3p from cardiomyocytes to cardiac endothelial cells, underlining the importance of cardiac intercellular communication in the pathophysiology of heart failure.


Subject(s)
Extracellular Vesicles , MicroRNAs , Animals , Cell Communication , Endothelial Cells/metabolism , Extracellular Vesicles/metabolism , Mice , MicroRNAs/genetics , MicroRNAs/metabolism , Myocytes, Cardiac/metabolism
7.
Cardiovasc Res ; 118(12): 2688-2702, 2022 09 20.
Article in English | MEDLINE | ID: mdl-34550326

ABSTRACT

AIMS: Research on the pathophysiology of right ventricular (RV) failure has, in spite of the associated high mortality and morbidity, lagged behind compared to the left ventricle (LV). Previous work from our lab revealed that the embryonic basic helix-loop-helix transcription factor heart and neural crest derivatives expressed-2 (Hand2) is re-expressed in the adult heart and activates a 'foetal gene programme' contributing to pathological cardiac remodelling under conditions of LV pressure overload. As such, ablation of cardiac expression of Hand2 conferred protection to cardiac stress and abrogated the maladaptive effects that were observed upon increased expression levels. In this study, we aimed to understand the contribution of Hand2 to RV remodelling in response to pressure overload induced by pulmonary artery banding (PAB). METHODS AND RESULTS: In this study, Hand2F/F and MCM- Hand2F/F mice were treated with tamoxifen (control and knockout, respectively) and subjected to six weeks of RV pressure overload induced by PAB. Echocardiographic- and MRI-derived haemodynamic parameters as well as molecular remodelling were assessed for all experimental groups and compared to sham-operated controls. Six weeks after PAB, levels of Hand2 expression increased in the control-banded animals but, as expected, remained absent in the knockout hearts. Despite the dramatic differences in Hand2 expression, pressure overload resulted in impaired cardiac function independently of the genotype. In fact, Hand2 depletion seems to sensitize the RV to pressure overload as these mice develop more hypertrophy and more severe cardiac dysfunction. Higher expression levels of HAND2 were also observed in RV samples of human hearts from patients with pulmonary hypertension. In turn, the LV of RV pressure-overloaded hearts was also dramatically affected as reflected by changes in shape, decreased LV mass, and impaired cardiac function. RNA-sequencing revealed a distinct set of genes that are dysregulated in the pressure-overloaded RV, compared to the previously described pressure-overloaded LV. CONCLUSION: Cardiac-specific depletion of Hand2 is associated with severe cardiac dysfunction in conditions of RV pressure overload. While inhibiting Hand2 expression can prevent cardiac dysfunction in conditions of LV pressure overload, the same does not hold true for conditions of RV pressu re overload. This study highlights the need to better understand the molecular mechanisms driving pathological remodelling of the RV in contrast to the LV, in order to better diagnose and treat patients with RV or LV failure.


Subject(s)
Heart Failure , Ventricular Dysfunction, Right , Animals , Basic Helix-Loop-Helix Transcription Factors/metabolism , Heart Failure/genetics , Heart Failure/metabolism , Heart Ventricles/metabolism , Humans , Mice , RNA/metabolism , Tamoxifen/metabolism , Transcription Factors/metabolism , Ventricular Dysfunction, Right/genetics , Ventricular Dysfunction, Right/metabolism , Ventricular Function, Right , Ventricular Pressure , Ventricular Remodeling
8.
Nat Commun ; 12(1): 4808, 2021 08 10.
Article in English | MEDLINE | ID: mdl-34376683

ABSTRACT

Myocardial regeneration is restricted to early postnatal life, when mammalian cardiomyocytes still retain the ability to proliferate. The molecular cues that induce cell cycle arrest of neonatal cardiomyocytes towards terminally differentiated adult heart muscle cells remain obscure. Here we report that the miR-106b~25 cluster is higher expressed in the early postnatal myocardium and decreases in expression towards adulthood, especially under conditions of overload, and orchestrates the transition of cardiomyocyte hyperplasia towards cell cycle arrest and hypertrophy by virtue of its targetome. In line, gene delivery of miR-106b~25 to the mouse heart provokes cardiomyocyte proliferation by targeting a network of negative cell cycle regulators including E2f5, Cdkn1c, Ccne1 and Wee1. Conversely, gene-targeted miR-106b~25 null mice display spontaneous hypertrophic remodeling and exaggerated remodeling to overload by derepression of the prohypertrophic transcription factors Hand2 and Mef2d. Taking advantage of the regulatory function of miR-106b~25 on cardiomyocyte hyperplasia and hypertrophy, viral gene delivery of miR-106b~25 provokes nearly complete regeneration of the adult myocardium after ischemic injury. Our data demonstrate that exploitation of conserved molecular programs can enhance the regenerative capacity of the injured heart.


Subject(s)
MicroRNAs/genetics , Myocardial Infarction/genetics , Myocytes, Cardiac/metabolism , Regeneration/genetics , Animals , Animals, Newborn , Cardiomegaly/genetics , Cells, Cultured , Echocardiography , Gene Expression Regulation , Humans , Hyperplasia/genetics , Mice , Myocardial Infarction/pathology , Myocardial Infarction/physiopathology , Rats , Reverse Transcriptase Polymerase Chain Reaction
9.
J Extracell Vesicles ; 10(10): e12111, 2021 08.
Article in English | MEDLINE | ID: mdl-34377372

ABSTRACT

Small extracellular vesicles (sEVs), through their natural ability to interact with biological membranes and exploit endogenous processing pathways to convey biological information, are quintessential for the delivery of therapeutically relevant compounds, such as microRNAs (miRNAs) and proteins. Here, we used a fluorescently-labelled miRNA to quantify the efficiency of different methods to modulate the cargo of sEVs. Our results showed that, compared with electroporation, heat shock, permeation by a detergent-based compound (saponin) or cholesterol-modification of the miRNA, Exo-Fect was the most efficient method with > 50% transfection efficiency. Furthermore, qRT-PCR data showed that, compared with native sEVs, Exo-Fect modulation led to a > 1000-fold upregulation of the miRNA of interest. Importantly, this upregulation was observed for sEVs isolated from multiple sources. The modulated sEVs were able to delivery miR-155-5p into a reporter cell line, confirming the successful delivery of the miRNA to the target cell and, more importantly, its functionality. Finally, we showed that the membrane of Exo-Fect-loaded sEVs was altered compared with native sEVs and that enhanced the internalization of Exo-Fect-loaded sEVs within the target cells and decreased the interaction of those modulated sEVs with lysosomes.


Subject(s)
Extracellular Vesicles/metabolism , Gene Transfer Techniques , MicroRNAs/metabolism , Cell Line , Drug Delivery Systems/methods , Extracellular Vesicles/ultrastructure , Genetic Vectors , HEK293 Cells , Humans , MicroRNAs/genetics , Microscopy, Electron, Transmission
11.
Heart Rhythm ; 18(5): 801-810, 2021 05.
Article in English | MEDLINE | ID: mdl-33278629

ABSTRACT

BACKGROUND: Heart rate follows a diurnal variation, and slow heart rhythms occur primarily at night. OBJECTIVE: The lower heart rate during sleep is assumed to be neural in origin, but here we tested whether a day-night difference in intrinsic pacemaking is involved. METHODS: In vivo and in vitro electrocardiographic recordings, vagotomy, transgenics, quantitative polymerase chain reaction, Western blotting, immunohistochemistry, patch clamp, reporter bioluminescence recordings, and chromatin immunoprecipitation were used. RESULTS: The day-night difference in the average heart rate of mice was independent of fluctuations in average locomotor activity and persisted under pharmacological, surgical, and transgenic interruption of autonomic input to the heart. Spontaneous beating rate of isolated (ie, denervated) sinus node (SN) preparations exhibited a day-night rhythm concomitant with rhythmic messenger RNA expression of ion channels including hyperpolarization-activated cyclic nucleotide-gated potassium channel 4 (HCN4). In vitro studies demonstrated 24-hour rhythms in the human HCN4 promoter and the corresponding funny current. The day-night heart rate difference in mice was abolished by HCN block, both in vivo and in the isolated SN. Rhythmic expression of canonical circadian clock transcription factors, for example, Brain and muscle ARNT-Like 1 (BMAL1) and Cryptochrome (CRY) was identified in the SN and disruption of the local clock (by cardiomyocyte-specific knockout of Bmal1) abolished the day-night difference in Hcn4 and intrinsic heart rate. Chromatin immunoprecipitation revealed specific BMAL1 binding sites on Hcn4, linking the local clock with intrinsic rate control. CONCLUSION: The circadian variation in heart rate involves SN local clock-dependent Hcn4 rhythmicity. Data reveal a novel regulator of heart rate and mechanistic insight into bradycardia during sleep.


Subject(s)
Bradycardia/genetics , Circadian Clocks/physiology , Electrocardiography/methods , Gene Expression Regulation , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/genetics , RNA/genetics , Sinoatrial Node/physiopathology , Animals , Bradycardia/metabolism , Bradycardia/physiopathology , Disease Models, Animal , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/biosynthesis , Mice
12.
Int J Mol Sci ; 21(23)2020 Nov 24.
Article in English | MEDLINE | ID: mdl-33255338

ABSTRACT

Pulmonary artery hypertension (PAH) is a rare chronic disease with high impact on patients' quality of life and currently no available cure. PAH is characterized by constant remodeling of the pulmonary artery by increased proliferation and migration of pulmonary arterial smooth muscle cells (PASMCs), fibroblasts (FBs) and endothelial cells (ECs). This remodeling eventually leads to increased pressure in the right ventricle (RV) and subsequent right ventricle hypertrophy (RVH) which, when left untreated, progresses into right ventricle failure (RVF). PAH can not only originate from heritable mutations, but also develop as a consequence of congenital heart disease, exposure to drugs or toxins, HIV, connective tissue disease or be idiopathic. While much attention was drawn into investigating and developing therapies related to the most well understood signaling pathways in PAH, in the last decade, a shift towards understanding the epigenetic mechanisms driving the disease occurred. In this review, we reflect on the different epigenetic regulatory factors that are associated with the pathology of RV remodeling, and on their relevance towards a better understanding of the disease and subsequently, the development of new and more efficient therapeutic strategies.


Subject(s)
Epigenesis, Genetic/genetics , Pulmonary Arterial Hypertension/genetics , Ventricular Dysfunction, Right/genetics , Ventricular Remodeling/genetics , Animals , Disease Models, Animal , Endothelial Cells/metabolism , Endothelial Cells/pathology , Humans , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Pulmonary Arterial Hypertension/pathology , Pulmonary Artery/metabolism , Pulmonary Artery/pathology , Signal Transduction , Ventricular Dysfunction, Right/pathology , Ventricular Function, Right/genetics
13.
Int J Mol Sci ; 21(23)2020 Dec 05.
Article in English | MEDLINE | ID: mdl-33291434

ABSTRACT

In 2020, cardiovascular diseases (CVDs) remain a leading cause of mortality and morbidity, contributing to the burden of the already overloaded health system. Late or incorrect diagnosis of patients with CVDs compromises treatment efficiency and patient's outcome. Diagnosis of CVDs could be facilitated by detection of blood-based biomarkers that reliably reflect the current condition of the heart. In the last decade, non-coding RNAs (ncRNAs) present on human biofluids including serum, plasma, and blood have been reported as potential biomarkers for CVDs. This paper reviews recent studies that focus on the use of ncRNAs as biomarkers of CVDs.


Subject(s)
Biomarkers , Cardiovascular Diseases/blood , Cardiovascular Diseases/diagnosis , Cell-Free Nucleic Acids , RNA, Untranslated/blood , Animals , Disease Management , Disease Susceptibility , Humans , Prognosis
14.
Front Physiol ; 11: 738, 2020.
Article in English | MEDLINE | ID: mdl-33013428

ABSTRACT

Intercellular communication allows for molecular information to be transferred from cell to cell, in order to maintain tissue or organ homeostasis. Alteration in the process due to changes, either on the vehicle or the cargo information, may contribute to pathological events, such as cardiac pathological remodeling. Extracellular vesicles (EVs), namely exosomes, are double-layer vesicles secreted by cells to mediate intercellular communication, both locally and systemically. EVs can carry different types of cargo, including non-coding RNAs (ncRNAs), which, are major regulators of physiological and pathological processes. ncRNAs transported in EVs are functionally active and trigger a cascade of processes in the recipient cells. Upon cardiac injury, exosomal ncRNAs can derive from and target different cardiac cell types to initiate cellular and molecular remodeling events such as hypertrophic growth, cardiac fibrosis, endothelial dysfunction, and inflammation, all contributing to cardiac dysfunction and, eventually, heart failure. Exosomal ncRNAs are currently accepted as crucial players in the process of cardiac pathological remodeling and alterations in their presence profile in EVs may attenuate cardiac dysfunction, suggesting that exosomal ncRNAs are potential new therapeutic targets. Here, we review the current research on the role of ncRNAs in intercellular communication, in the context of cardiac pathological remodeling.

15.
Front Physiol ; 11: 579892, 2020.
Article in English | MEDLINE | ID: mdl-33101061

ABSTRACT

Cardiovascular disease (CVD) is the leading cause of mortality worldwide claiming almost 17. 9 million deaths annually. A primary cause is atherosclerosis within the coronary arteries, which restricts blood flow to the heart muscle resulting in myocardial infarction (MI) and cardiac cell death. Despite substantial progress in the management of coronary heart disease (CHD), there is still a significant number of patients developing chronic heart failure post-MI. Recent research has been focused on promoting neovascularisation post-MI with the ultimate goal being to reduce the extent of injury and improve function in the failing myocardium. Cardiac cell transplantation studies in pre-clinical models have shown improvement in cardiac function; nonetheless, poor retention of the cells has indicated a paracrine mechanism for the observed improvement. Cell communication in a paracrine manner is controlled by various mechanisms, including extracellular vesicles (EVs). EVs have emerged as novel regulators of intercellular communication, by transferring molecules able to influence molecular pathways in the recipient cell. Several studies have demonstrated the ability of EVs to stimulate angiogenesis by transferring microRNA (miRNA, miR) molecules to endothelial cells (ECs). In this review, we describe the process of neovascularisation and current developments in modulating neovascularisation in the heart using miRNAs and EV-bound miRNAs. Furthermore, we critically evaluate methods used in cell culture, EV isolation and administration.

16.
Noncoding RNA Res ; 5(3): 144-152, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32954093

ABSTRACT

Obesity leads to an amplified risk of disease and contributes to the occurrence of type 2 diabetes, fatty liver disease, coronary heart disease, stroke, chronic kidney disease and various types of cancer. MicroRNAs (miRNAs), small non-coding RNA molecules of 20-25 nucleotides, can remain stable in plasma and have been studied as potential (predictive) biomarkers for obesity and related metabolic disorders. The aim of this study was to identify circulating miRNAs as biomarkers for obesity status and metabolic alterations in women. Circulating miR-216a and miR-155-5p were selected by miRNA expression profiling and validated by real time quantitative PCR in a validation cohort of 60 obese women and 60 normal weight-age-matched control women. This was supplemented by correlation analysis of the candidate miRNA and anthropometric variables, blood biochemistry and lipid profile markers. Circulating miR-216a was validated as a biomarker of obesity status with significantly reduced levels in obese women. Interestingly, this was associated with a negative correlation between the plasma miR-216a content and body mass index (BMI), waist circumference, mean arterial pressure (MAP), triglycerides, ratio of total cholesterol/high density lipoprotein (HDL)-cholesterol and high sensitivity-C reactive protein (hs-CRP).Taken together, we provide evidence for an abnormally expressed circulating miRNA, miR-216a, with additive value as a predictive marker for obesity that correlates with metabolic alterations presented by lipid profile and inflammatory markers.

17.
Nat Rev Cardiol ; 17(11): 685-697, 2020 11.
Article in English | MEDLINE | ID: mdl-32483304

ABSTRACT

Extracellular vesicles (EVs) are a heterogeneous group of natural particles that are relevant to the treatment of cardiovascular diseases. These endogenous vesicles have certain properties that allow them to survive in the extracellular space, bypass biological barriers and deliver their biologically active molecular cargo to recipient cells. Moreover, EVs can be bioengineered to increase their stability, bioactivity, presentation to acceptor cells and capacity for on-target binding at both cell-type-specific and tissue-specific levels. Bioengineering of EVs involves the modification of the donor cell before EV isolation or direct modification of the EV properties after isolation. The therapeutic potential of native EVs and bioengineered EVs has been only minimally explored in the context of cardiovascular diseases. Efforts to harness the therapeutic potential of EVs will require innovative approaches and a comprehensive integration of knowledge gathered from decades of research into molecular-compound delivery. In this Review, we outline the endogenous properties of EVs that make them natural delivery agents as well as the features that can be improved by bioengineering. We also discuss the therapeutic applications of native and bioengineered EVs to cardiovascular diseases and examine the opportunities and challenges that need to be addressed to advance this research area, with an emphasis on clinical translation.


Subject(s)
Bioengineering , Cardiovascular Diseases/therapy , Extracellular Vesicles/transplantation , Ischemia/therapy , Myocardial Infarction/therapy , Regeneration , Stem Cells/metabolism , Stroke/therapy , Brain/physiology , Cell Survival , Extracellular Vesicles/metabolism , Extremities/blood supply , Heart/physiology , Humans , MicroRNAs/metabolism , MicroRNAs/therapeutic use , Myocytes, Cardiac , Paracrine Communication
18.
Cells ; 9(4)2020 04 23.
Article in English | MEDLINE | ID: mdl-32340411

ABSTRACT

The prevalence of metabolic syndrome (MetS) and obesity is an alarming health issue worldwide. Obesity is characterized by an excessive accumulation of white adipose tissue (WAT), and it is associated with diminished brown adipose tissue (BAT) activity. Twist1 acts as a negative feedback regulator of BAT metabolism. Therefore, targeting Twist1 could become a strategy for obesity and metabolic disease. Here, we have identified miR-337-3p as an upstream regulator of Twist1. Increased miR-337-3p expression paralleled decreased expression of TWIST1 in BAT compared to WAT. Overexpression of miR-337-3p in brown pre-adipocytes provoked a reduction in Twist1 expression that was accompanied by increased expression of brown/mitochondrial markers. Luciferase assays confirmed an interaction between the miR-337 seed sequence and Twist1 3'UTR. The inverse relationship between the expression of TWIST1 and miR-337 was finally validated in adipose tissue samples from non-MetS and MetS subjects that demonstrated a dysregulation of the miR-337-Twist1 molecular axis in MetS. The present study demonstrates that adipocyte miR-337-3p suppresses Twist1 repression and enhances the browning of adipocytes.


Subject(s)
Adipocytes, Brown/metabolism , MicroRNAs/metabolism , Nuclear Proteins/metabolism , Twist-Related Protein 1/metabolism , Adipose Tissue, Brown/metabolism , Animals , Base Sequence , Feedback, Physiological , Humans , Metabolic Syndrome/genetics , Mice , MicroRNAs/genetics , Thermogenesis , Up-Regulation/genetics
19.
Cardiovasc Res ; 116(7): 1240-1241, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32031589

Subject(s)
Heart , RNA, Circular
20.
Biochim Biophys Acta Mol Cell Res ; 1867(3): 118515, 2020 03.
Article in English | MEDLINE | ID: mdl-31362011

ABSTRACT

Heart failure (HF) as a result of myocardial infarction (MI) is the leading cause of death worldwide. In contrast to the adult mammalian heart, which has low regenerative capacity, newborn mammalian and zebrafish hearts can completely regenerate after injury. Cardiac regeneration is considered to be mediated by proliferation of pre-existing cardiomyocytes (CMs) mainly located in a hypoxic niche. To find new therapies to treat HF, efforts are being made to understand the molecular pathways underlying the regenerative capacity of the heart. However, the multicellularity of the heart is important during cardiac regeneration as not only CM proliferation but also the restoration of the endothelium is imperative to prevent progression to HF. It has recently come to light that signalling from non-coding RNAs (ncRNAs) and extracellular vesicles (EVs) plays a role in the healthy and the diseased heart. Multiple studies identified differentially expressed ncRNAs after MI, making them potential therapeutic targets. In this review, we highlight the molecular interactions between endothelial cells (ECs) and CMs in cardiac regeneration and when the heart loses its regenerative capacity. We specifically emphasize the role of ncRNAs and cell-cell communication via EVs during cardiac regeneration and neovascularisation.


Subject(s)
Heart Failure/therapy , Heart/growth & development , Myocytes, Cardiac/metabolism , Regeneration/genetics , Animals , Cell Hypoxia/genetics , Cell Proliferation/genetics , Endothelial Cells/metabolism , Endothelial Cells/physiology , Heart/physiopathology , Heart Failure/pathology , Humans , Myocardial Infarction/pathology , Myocardial Infarction/therapy , Myocytes, Cardiac/physiology , Zebrafish/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...