Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
2.
Pharmaceutics ; 15(1)2022 Dec 24.
Article in English | MEDLINE | ID: mdl-36678680

ABSTRACT

Current chemotherapy of cutaneous leishmaniasis (CL) is based on repeated systemic or intralesional administration of drugs that often cause severe toxicity. Previously, we demonstrated the therapeutic potential of biodegradable poly(lactic-co-glycolic acid) (PLGA) microparticles (MPs) loaded with 8% of the nitrochalcone CH8 (CH8/PLGA) prepared by a conventional bench method. Aiming at an industrially scalable process and increased drug loading, new MPs were prepared by spray drying: CH8/PDE with PLGA matrix and CH8/PVDE with PLGA + polyvinylpyrrolidone (PVP) matrix, both with narrower size distribution and higher drug loading (18%) than CH8/PLGA. Animal studies were conducted to evaluate their clinical feasibility. Both MP types induced transient local swelling and inflammation, peaking at 1−2 days, following a single intralesional injection. Different from CH8/PDE that released 90% of the drug in the ear tissue in 60 days, CH8/PVDE achieved that in 30 days. The therapeutic efficacy of a single intralesional injection was evaluated in BALB/c mice infected with Leishmania (Leishmania) amazonensis and golden hamsters infected with L. (Viannia) braziliensis. CH8/PVDE promoted greater reduction in parasite burden than CH8/PDE or CH8/PLGA, measured at one month and two months after the treatment. Thus, addition of PVP to PLGA MP matrix accelerates drug release in vivo and increases its therapeutic effect against CL.

3.
Article in English | MEDLINE | ID: mdl-31131262

ABSTRACT

Physical exercise has been described as an important tool in the prevention and treatment of numerous diseases as it promotes a range of responses and adaptations in several biological systems, including the immune system. Studies on the effect of exercise on the immune system could play a critical role in improving public health. Current literature suggests that moderate intensity exercise can modulate the Th1/Th2 dichotomy directing the immune system to a Th1 cellular immune response, which favors the resolution of infections caused by intracellular microorganisms. Leishmaniasis is a group of diseases presenting a wide spectrum of clinical manifestations that range from self-limiting lesions to visceral injuries whose severity can lead to death. The etiological agents responsible for this group of diseases are protozoa of the genus Leishmania. Infections by the parasite Leishmania major in mice (Balb/c) provide a prototype model for the polarization of CD4+ T cell responses of both Th1 (resistance) or Th2 (susceptibility), which determines the progression of infections. The aim of this study was to evaluate the effect of exercise on the development of L. major experimental infections by scanning the pattern of immune response caused by exercise. Groups of Balb/c mice infected with L. major were divided into groups that preformed a physical exercise of swimming three times a week or were sedentary along with treatment or not with the reference drug, meglumine antimoniate. Animals in groups submitted to physical exercise did not appear to develop lesions and presented a significantly lower parasite load independent of drug treatment. They also showed a positive delayed hypersensitivity response to a specific Leishmania antigen compared to control animals. The IFN-γ/IL-4 and IFN-γ/IL10 ratios in trained animals were clearly tilted to a Th1 response in lymph node cells. These data suggest that moderate intensity exercise is able to modulate the Th1 response that provides a protective effect against the development of leishmanial lesions.


Subject(s)
Exercise Therapy/methods , Immunomodulation , Leishmania major/immunology , Leishmaniasis, Cutaneous/immunology , Leishmaniasis, Cutaneous/therapy , Physical Conditioning, Animal , Animals , Cytokines/analysis , Disease Models, Animal , Leishmaniasis, Cutaneous/parasitology , Leishmaniasis, Cutaneous/pathology , Mice, Inbred BALB C , Parasite Load , Th1 Cells/immunology , Treatment Outcome
4.
PLoS One ; 9(10): e109672, 2014.
Article in English | MEDLINE | ID: mdl-25340550

ABSTRACT

Previous results demonstrate that the hybrid synthetic pterocarpanquinone LQB-118 presents antileishmanial activity against Leishmania amazonensis in a mouse model. The aim of the present study was to use a hamster model to investigate whether LQB-118 presents antileishmanial activity against Leishmania (Viannia) braziliensis, which is the major Leishmania species related to American tegumentary leishmaniasis. The in vitro antileishmanial activity of LQB-118 on L. braziliensis was tested on the promastigote and intracellular amastigote forms. The cell death induced by LQB-118 in the L. braziliensis promastigotes was analyzed using an annexin V-FITC/PI kit, the oxidative stress was evaluated by 2',7'-dichlorodihydrofluorescein diacetate (H2DCFDA) and the ATP content by luminescence. In situ labeling of DNA fragments by terminal deoxyribonucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) was used to investigate apoptosis in the intracellular amastigotes. L. braziliensis-infected hamsters were treated from the seventh day of infection with LQB-118 administered intralesionally (26 µg/kg/day, three times a week) or orally (4,3 mg/kg/day, five times a week) for eight weeks. LQB-118 was active against the L. braziliensis promastigotes and intracellular amastigotes, producing IC50 (50% inhibitory concentration) values of 3,4±0,1 and 7,5±0,8 µM, respectively. LQB-118 induced promastigote phosphatidylserine externalization accompanied by increased reactive oxygen species production and ATP depletion. Intracellular amastigote DNA fragmentation was also observed, without affecting the viability of macrophages. The treatment of L. braziliensis-infected hamsters with LQB-118, either orally or intralesionally, was effective in the control of lesion size, parasite load and increase intradermal reaction to parasite antigen. Taken together, these results show that the antileishmanial effect of LQB-118 extends to L. braziliensis in the hamster model, involves the induction of parasite apoptosis and shows promising therapeutic option by oral or local routes in leishmaniasis.


Subject(s)
Antiprotozoal Agents/pharmacology , Apoptosis/drug effects , Leishmania braziliensis/drug effects , Leishmaniasis, Cutaneous/parasitology , Naphthoquinones/pharmacology , Pterocarpans/pharmacology , Animals , Cricetinae , Female , Leishmaniasis, Cutaneous/pathology , Macrophages/drug effects , Macrophages/parasitology , Membrane Potential, Mitochondrial/drug effects , Mesocricetus , Phosphatidylserines/metabolism
5.
PLoS Negl Trop Dis ; 7(10): e2481, 2013.
Article in English | MEDLINE | ID: mdl-24147167

ABSTRACT

BACKGROUND: Iron is an essential element for the survival of microorganisms in vitro and in vivo, acting as a cofactor of several enzymes and playing a critical role in host-parasite relationships. Leishmania (Viannia) braziliensis is a parasite that is widespread in the new world and considered the major etiological agent of American tegumentary leishmaniasis. Although iron depletion leads to promastigote and amastigote growth inhibition, little is known about the role of iron in the biology of Leishmania. Furthermore, there are no reports regarding the importance of iron for L. (V.) braziliensis. METHODOLOGY/PRINCIPAL FINDINGS: In this study, the effect of iron on the growth, ultrastructure and protein expression of L. (V.) braziliensis was analyzed by the use of the chelator 2,2-dipyridyl. Treatment with 2,2-dipyridyl affected parasites' growth in a dose- and time-dependent manner. Multiplication of the parasites was recovered after reinoculation in fresh culture medium. Ultrastructural analysis of treated promastigotes revealed marked mitochondrial swelling with loss of cristae and matrix and the presence of concentric membranar structures inside the organelle. Iron depletion also induced Golgi disruption and intense cytoplasmic vacuolization. Fluorescence-activated cell sorting analysis of tetramethylrhodamine ester-stained parasites showed that 2,2-dipyridyl collapsed the mitochondrial membrane potential. The incubation of parasites with propidium iodide demonstrated that disruption of mitochondrial membrane potential was not associated with plasma membrane permeabilization. TUNEL assays indicated no DNA fragmentation in chelator-treated promastigotes. In addition, two-dimensional electrophoresis showed that treatment with the iron chelator induced up- or down-regulation of proteins involved in metabolism of nucleic acids and coordination of post-translational modifications, without altering their mRNA levels. CONCLUSIONS: Iron chelation leads to a multifactorial response that results in cellular collapse, starting with the interruption of cell proliferation and culminating in marked mitochondrial impairment in some parasites and their subsequent cell death, whereas others may survive and resume proliferating.


Subject(s)
2,2'-Dipyridyl/pharmacology , Chelating Agents/pharmacology , Iron/metabolism , Leishmania braziliensis/drug effects , Leishmania braziliensis/growth & development , Mitochondria/drug effects , Mitochondria/ultrastructure , Cell Death , Cell Membrane/physiology , Cell Membrane Permeability , Cytoplasmic Vesicles/drug effects , Cytoplasmic Vesicles/ultrastructure , DNA Fragmentation , Gene Expression/drug effects , Golgi Apparatus/drug effects , Golgi Apparatus/ultrastructure , Humans , In Situ Nick-End Labeling , Leishmania braziliensis/metabolism , Leishmania braziliensis/ultrastructure , Membrane Potential, Mitochondrial/drug effects , Mitochondria/physiology , Protozoan Proteins/biosynthesis
6.
Planta Med ; 72(1): 81-3, 2006 Jan.
Article in English | MEDLINE | ID: mdl-16450304

ABSTRACT

Quercitrin (quercetin 3- O-alpha- L-rhamnopyranoside), one of the constituents of the biologically active aqueous extract obtained from Kalanchoe pinnata, is demonstrated to be a potent antileishmanial compound (IC50 approximately 1 microg/mL) with a low toxicity profile. This is the first time that antileishmanial activity is demonstrated for a flavonoid glycoside.


Subject(s)
Antiparasitic Agents/pharmacology , Kalanchoe/chemistry , Leishmania/drug effects , Quercetin/analogs & derivatives , Animals , Mice , Plant Extracts/pharmacology , Plant Leaves/chemistry , Quercetin/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...