Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters











Publication year range
1.
Plant Physiol Biochem ; 204: 108145, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37907041

ABSTRACT

We recently demonstrated that, under elevated [CO2] (eCa), coffee (Coffea arabica L.) plants grown at high light (HL), but not at low light (LL), display higher stomatal conductance (gs) than at ambient [CO2] (aCa). We then hypothesized that the enhanced gs at eCa/HL, if sustained at the long-term, would lead to adjustments in hydraulic architecture. To test this hypothesis, potted plants of coffee were grown in open-top chambers for 12 months under HL or LL (ca. 9 or 1 mol photons m-2 day-1, respectively); these light treatments were combined with two [CO2] levels (ca. 437 or 705 µmol mol-1, respectively). Under eCa/HL, increased gs was closely accompanied by increases in branch and leaf hydraulic conductances, suggesting a coordinated response between liquid- and vapor-phase water flows throughout the plant. Still under HL, eCa also resulted in increased Huber value (sapwood area-to-total leaf area), sapwood area-to-stem diameter, and root mass-to-total leaf area, thus further improving the water supply to the leaves. Our results demonstrate that Ca is a central player in coffee physiology increasing carbon gain through a close association between stomatal function and an improved hydraulic architecture under HL conditions.


Subject(s)
Coffea , Plant Stomata , Plant Stomata/physiology , Photosynthesis/physiology , Carbon Dioxide , Coffee , Coffea/physiology , Plant Leaves/physiology , Water/physiology
2.
Plants (Basel) ; 12(7)2023 Mar 28.
Article in English | MEDLINE | ID: mdl-37050105

ABSTRACT

Coffee (Coffea arabica L.) plants have been assorted as highly suitable to growth at elevated [CO2] (eCa), although such suitability is hypothesized to decrease under severe shade. We herein examined how the combination of eCa and contrasting irradiance affects growth and photosynthetic performance. Coffee plants were grown in open-top chambers under relatively high light (HL) or low light (LL) (9 or 1 mol photons m-2 day-1, respectively), and aCa or eCa (437 or 705 µmol mol-1, respectively). Most traits were affected by light and CO2, and by their interaction. Relative to aCa, our main findings were (i) a greater stomatal conductance (gs) (only at HL) with decreased diffusive limitations to photosynthesis, (ii) greater gs during HL-to-LL transitions, whereas gs was unresponsive to the LL-to-HL transitions irrespective of [CO2], (iii) greater leaf nitrogen pools (only at HL) and higher photosynthetic nitrogen-use efficiency irrespective of light, (iv) lack of photosynthetic acclimation, and (v) greater biomass partitioning to roots and earlier branching. In summary, eCa improved plant growth and photosynthetic performance. Our novel and timely findings suggest that coffee plants are highly suited for a changing climate characterized by a progressive elevation of [CO2], especially if the light is nonlimiting.

3.
Tree Physiol ; 43(1): 75-87, 2023 01 05.
Article in English | MEDLINE | ID: mdl-36070431

ABSTRACT

The resistance of xylem conduits to embolism is a major factor defining drought tolerance and can set the distributional limits of species across rainfall gradients. Recent work suggests that the proximity of vessels to neighbors increases the vulnerability of a conduit. We therefore investigated whether the relative vessel area of xylem correlates with intra- and inter-generic variation in xylem embolism resistance in species pairs or triplets from the genera Acer, Cinnamomum, Ilex, Quercus and Persea, adapted to environments differing in aridity. We used the optical vulnerability method to assess embolism resistance in stems and conducted anatomical measurements on the xylem in which embolism resistance was quantified. Vessel lumen fraction (VLF) correlated with xylem embolism resistance across and within genera. A low VLF likely increases the resistance to gas movement between conduits, by diffusion or advection, whereas a high VLF enhances gas transport thorough increased conduit-to-conduit connectivity and reduced distances between conduits and therefore the likelihood of embolism propagation. We suggest that the rate of gas movement due to local pressure differences and xylem network connectivity is a central driver of embolism propagation in angiosperm vessels.


Subject(s)
Embolism , Magnoliopsida , Plant Leaves , Xylem , Drought Resistance , Water , Droughts
4.
Tree Physiol ; 42(9): 1750-1761, 2022 09 08.
Article in English | MEDLINE | ID: mdl-35388901

ABSTRACT

Ongoing changes in climate, and the consequent mortality of natural and cultivated forests across the globe, highlight the urgent need to understand the plant traits associated with greater tolerance to drought. Here, we aimed at assessing key foliar traits, with a focus on the hydraulic component, that could confer a differential ability to tolerate drought in three commercial hybrids of the most important Eucalyptus species utilized in tropical silviculture: E. urophyla, E. grandis and E. camaldulensis. All genotypes exhibited similar water potential when the 90% stomatal closure (Ψgs90) occurs with Ψgs90 always preceding the start of embolism events. The drought-tolerant hybrid showed a higher leaf resistance to embolism, but the leaf hydraulic efficiency was similar among all genotypes. Other traits presented by the drought-tolerant hybrid were a higher cell wall reinforcement, lower value of osmotic potential at full turgor and greater bulk modulus of elasticity. We also identified that the leaf capacitance after the turgor loss, the ratio between cell wall thickness (t) and lumen breadth (b) ratio (t/b)3, and the minimal conductance might be good proxies for screening drought-tolerant Eucalyptus genotypes. Our findings suggest that xylem resistance to embolism can be an important component of drought tolerance in Eucalyptus in addition to other traits aimed at delaying the development of high tensions in the xylem. Highlight Drought tolerance in tropical Eucalyptus hybrids encompasses a high leaf resistance to embolism and a suite of traits aimed at delaying the development of high tensions in the xylem.


Subject(s)
Eucalyptus , Clone Cells , Droughts , Eucalyptus/genetics , Plant Leaves , Water , Xylem
5.
J Exp Bot ; 73(12): 4147-4156, 2022 06 24.
Article in English | MEDLINE | ID: mdl-35312771

ABSTRACT

Auxins are known to regulate xylem development in plants, but their effects on water transport efficiency are poorly known. Here we used tomato plants with the diageotropica mutation (dgt), which has impaired function of a cyclophilin 1 cis-trans isomerase involved in auxin signaling, and the corresponding wild type (WT) to explore the mutation's effects on plant hydraulics and leaf gas exchange. The xylem of the dgt mutant showed a reduced hydraulically weighted vessel diameter (Dh) (24-43%) and conduit number (25-58%) in petioles and stems, resulting in lower theoretical hydraulic conductivities (Kt); on the other hand, no changes in root Dh and Kt were observed. The measured stem and leaf hydraulic conductances of the dgt mutant were lower (up to 81%), in agreement with the Kt values; however, despite dgt and WT plants showing similar root Dh and Kt, the measured root hydraulic conductance of the dgt mutant was 75% lower. The dgt mutation increased the vein and stomatal density, which could potentially increase photosynthesis. Nevertheless, even though it had the same photosynthetic capacity as WT plants, the dgt mutant showed a photosynthetic rate c. 25% lower, coupled with a stomatal conductance reduction of 52%. These results clearly demonstrate that increases in minor vein and stomatal density only result in higher leaf gas exchange when accompanied by higher hydraulic efficiency.


Subject(s)
Photosynthesis , Water , Indoleacetic Acids , Plant Leaves/physiology , Water/physiology , Xylem/physiology
6.
Plant Cell Environ ; 45(4): 1204-1215, 2022 04.
Article in English | MEDLINE | ID: mdl-34984700

ABSTRACT

Xylem embolism resistance varies across species influencing drought tolerance, yet little is known about the determinants of the embolism resistance of an individual conduit. Here we conducted an experiment using the optical vulnerability method to test whether individual conduits have a specific water potential threshold for embolism formation and whether pre-existing embolism in neighbouring conduits alters this threshold. Observations were made on a diverse sample of angiosperm and conifer species through a cycle of dehydration, rehydration and subsequent dehydration to death. Upon rehydration after the formation of embolism, no refilling was observed. When little pre-existing embolism was present, xylem conduits had a conserved, individual embolism-resistance threshold that varied across the population of conduits. The consequence of a variable conduit-specific embolism threshold is that a small degree of pre-existing embolism in the xylem results in apparently more resistant xylem in subsequent dehydrations, particularly in angiosperms with vessels. While our results suggest that pit membranes separating xylem conduits are critical for maintaining a conserved individual conduit threshold for embolism when little pre-existing embolism is present, as the percentage of embolized conduits increases, gas movement, local pressure differences and connectivity between conduits increasingly contribute to embolism spread.


Subject(s)
Embolism , Magnoliopsida , Dehydration , Water , Xylem
7.
Food Chem ; 375: 131850, 2022 May 01.
Article in English | MEDLINE | ID: mdl-34953242

ABSTRACT

Fruit pungency is caused by the accumulation of capsaicinoids, secondary metabolites whose relation to primary metabolism remains unclear. We have selected ten geographically diverse accessions of Capsicum chinense Jacq with different pungency levels. A detailed metabolic profile was conducted in the fruit placenta and pericarp at 20, 45, and 60 days after anthesis aiming at increasing our understanding of the metabolic changes in these tissues across fruit development and their potential connection to capsaicin metabolism. Overall, despite the variation in fruit pungency among the ten accessions, the composition and metabolite levels in both placenta and pericarp were uniformly stable across accessions. Most of the metabolite variability occurred between the fruit developmental stages rather than among the accessions. Interestingly, different metabolite adjustments in the placenta were observed among pungent and non-pungent accessions, which seem to be related to differences in the genetic background. Furthermore, we observed high coordination between metabolites and capsaicin production in C. chinense fruits, suggesting that pungency in placenta is adjusted with primary metabolism.


Subject(s)
Capsicum , Piper nigrum , Capsaicin/analysis , Fruit/chemistry , Reproduction
8.
Physiol Plant ; 172(4): 2142-2152, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33942915

ABSTRACT

Xylem resistance to embolism is a key metric determining plant survival during drought. Yet, we have a limited understanding of the degree of plasticity in vulnerability to embolism. Here, we tested whether light availability influences embolism resistance in leaves and stems. The optical vulnerability method was used to assess stem and leaf resistance to embolism in Phellodendron amurense and Ilex verticillata acclimated to sun and shade microenvironments within the same canopy. In both species, we found considerable segmentation in xylem resistance to embolism between leaves and stems, but only minor acclimation in response to light availability. With the addition of a third species, Betula pubescens, which shows no vulnerability segmentation, we sought to investigate xylem anatomical traits that might correlate with strong vulnerability segmentation. We found a correlation between the area fraction of vessels in the xylem and embolism resistance across species and tissue types. Our results suggest that minimal acclimation of embolism resistance occurs in response to light environment in the same individual and that the degree of vulnerability segmentation between leaves and stems might be determined by the vessel lumen fraction of the xylem.


Subject(s)
Embolism , Xylem , Betula , Droughts , Plant Leaves , Plant Stems , Water
9.
Planta ; 253(1): 16, 2021 Jan 03.
Article in English | MEDLINE | ID: mdl-33392753

ABSTRACT

MAIN CONCLUSION: Nitrogen promotes changes in SLA through metabolism and anatomical traits in Capsicum plants. Specific leaf area (SLA) is a key trait influencing light interception and light use efficiency that often impacts plant growth and production. SLA is a key trait explaining growth variations of plant species under different environments. Both light and nitrogen (N) supply are important determinants of SLA. To better understand the effect of irradiance level and N on SLA in Capsicum chinense, we evaluated primary metabolites and morphological traits of two commercial cultivars (Biquinho and Habanero) in response to changes in both parameters. Both genotypes showed increased SLA with shading, and a decrease in SLA in response to increased N supply, however, with Habanero showing a stable SLA in the range of N deficiency to sufficient N doses. Correlation analyses indicated that decreased SLA in response to higher N supply was mediated by altered amino acids, protein, and starch levels, influencing leaf density. Moreover, in the range of moderate N deficiency to N sufficiency, both genotypes exhibited differences in SLA response, with Biquinho and Habanero displaying alterations on palisade and spongy parenchyma, respectively. Altogether, the results suggest that SLA responses to N supply are modulated by the balance between certain metabolites content and genotype-dependent changes in the parenchyma cells influencing leaf thickness and density.


Subject(s)
Capsicum , Mesophyll Cells , Nitrogen , Plant Leaves , Capsicum/anatomy & histology , Capsicum/genetics , Capsicum/metabolism , Mesophyll Cells/metabolism , Nitrogen/metabolism , Plant Leaves/anatomy & histology
10.
Tree Physiol ; 41(1): 35-49, 2021 01 09.
Article in English | MEDLINE | ID: mdl-32879972

ABSTRACT

The overall coordination between gas exchanges and plant hydraulics may be affected by soil water availability and source-to-sink relationships. Here we evaluated how branch growth and mortality, leaf gas exchange and metabolism are affected in coffee (Coffea arabica L.) trees by drought and fruiting. Field-grown plants were irrigated or not, and maintained with full or no fruit load. Under mild water deficit, irrigation per se did not significantly impact growth but markedly reduced branch mortality in fruiting trees, despite similar leaf assimilate pools and water status. Fruiting increased net photosynthetic rate in parallel with an enhanced stomatal conductance, particularly in irrigated plants. Mesophyll conductance and maximum RuBisCO carboxylation rate remained unchanged across treatments. The increased stomatal conductance in fruiting trees over nonfruiting ones was unrelated to internal CO2 concentration, foliar abscisic acid (ABA) levels or differential ABA sensitivity. However, stomatal conductance was associated with higher stomatal density, lower stomatal sensitivity to vapor pressure deficit, and higher leaf hydraulic conductance and capacitance. Increased leaf transpiration rate in fruiting trees was supported by coordinated alterations in plant hydraulics, which explained the maintenance of plant water status. Finally, by preventing branch mortality, irrigation can mitigate biennial production fluctuations and improve the sustainability of coffee plantations.


Subject(s)
Coffea , Trees , Coffee , Photosynthesis , Plant Leaves , Plant Transpiration , Water
11.
Ecotoxicol Environ Saf ; 189: 110008, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31796254

ABSTRACT

Excess iron (Fe) is commonly observed in wetland rice (Oryza sativa L.) plants, impairing crop growth and productivity. Some information suggests that silicon (Si) can reduce Fe content in leaves and roots of rice (vegetative phase), but nothing is known if Si could mitigate the effects of Fe toxicity on rice production and photosynthesis. Here, we assessed the role of Si in alleviating the well-known effects of Fe toxicity on nutritional imbalances, biomass accumulation, photosynthesis and grain yield using two rice cultivars having differential abilities to tolerate excess Fe. Plants were hydroponically grown under two Fe levels (25 µM or 5 mM) and the nutrient solutions were amended with Si (0 or 2 mM). Under excess Fe were detected (i) nutritional deficiencies, especially of calcium and magnesium in leaves; (ii) negligible changes in grain nutritional composition, independently of Si application; (iii) decreases in net photosynthetic rates, stomatal conductance and electron transport rate, in parallel to decreased grain yield components (total grain biomass, 1000-grain mass, percentage of filled grains, number of grains per plant and harvest index), especially in the Fe-sensitive cultivar. These impairments were partially reversed by the application of Si. Results also suggest that Si alleviated the negative impacts of Fe on spikelet sterility. In summary, we conclude that the use of Si can be recommended as an effective management strategy to reduce the negative impacts of Fe toxicity on rice photosynthetic performance and crop yield.


Subject(s)
Edible Grain/drug effects , Iron/toxicity , Oryza/drug effects , Photosynthesis/drug effects , Silicon/pharmacology , Edible Grain/growth & development , Edible Grain/metabolism , Electron Transport/drug effects , Hydroponics , Iron/metabolism , Oryza/growth & development , Oryza/metabolism , Plant Leaves/drug effects , Plant Leaves/metabolism , Plant Roots/drug effects , Plant Roots/metabolism , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/toxicity
12.
Plant Physiol Biochem ; 143: 275-285, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31536896

ABSTRACT

Iron (Fe) toxicity is often observed in lowland rice (Oryza sativa L.) plants, disrupting cell homeostasis and impairing growth and crop yields. Silicon (Si) can mitigate the effects of Fe excess on rice by decreasing tissue Fe concentrations, but no information exists whether Si could prevent the harmful effects of Fe toxicity on the photosynthesis and carbon metabolism. Two rice cultivars with contrasting abilities to tolerate Fe excess were hydroponically grown under two Fe levels (25 µM or 5 mM) and amended or not with Si (0 or 2 mM). Fe toxicity caused decreases in net photosynthetic rate (A), particularly in the sensitive cultivar. These decreases were correlated with reductions in stomatal (gs) and mesophyll (gm) conductances, as well as with increasing photorespiration. Photochemical (e.g. electron transport rate) and biochemical (e.g., maximum RuBisCO carboxylation capacity and RuBisCO activity) parameters of photosynthesis, and activities of a range of carbon metabolism enzymes, were minimally, if at all, affected by the treatments. Si attenuated the decreases in A by presumably reducing the Fe content. In fact, A as well as gs and gm, correlated significantly with leaf Fe contents. In summary, our data suggest a remarkable metabolic homeostasis under Fe toxicity, and that Si attenuated the impairments of Fe excess on the photosynthetic apparatus by affecting the leaf diffusive conductance with minimal impacts on carbon metabolism.


Subject(s)
Carbon/metabolism , Iron/toxicity , Oryza/metabolism , Silicon/pharmacology , Gene Expression Regulation, Plant , Oryza/drug effects , Oryza/physiology , Photosynthesis/drug effects , Plant Leaves/drug effects , Plant Leaves/metabolism , Plant Leaves/physiology
13.
PLoS One ; 13(11): e0206149, 2018.
Article in English | MEDLINE | ID: mdl-30383815

ABSTRACT

Cacao (Theobroma cacao L.) has traditionally been considered a crop that requires shade, and consequently it is implemented under agroforestry systems (AFs) in order to regulate the level of incident solar radiation. However, optimal shade levels for this tree crop may vary depending on the climate conditions of where it is grown. Here we analyzed the physiological performance of cacao under three different AFs in the Colombian Amazon that differed in solar radiation patterns: high (HPAR), medium (MPAR), or low (LPAR) mean daily incident radiation. The physiological performance was characterized using photosynthetic variables in leaves such as light- and CO2-response curves, chlorophyll a fluorescence parameters, and total chlorophyll and carotenoid contents, in conjunction with other leaf functional traits. Cacao trees exposed to HPAR showed an improved physiological performance as compared to those from the other two AFs. Compared to MPAR and LPAR, cacao trees in HPAR doubled the rate of net carbon assimilation and reached higher maximum rates of RuBisCO carboxylation and RuBP regeneration. Moreover, cacao trees in HPAR presented photoprotection mechanisms that avoided photoinhibition, which was accompanied by a greater non-photochemical quenching coefficient and biochemical and morphological adjustments (low chlorophyll but higher carotenoid contents and low specific leaf area) compared to cacao trees from the other AFs. Overall, our results show that, due to the high cloud cover in the Colombian Amazon, cacao plantations under conditions of sparse shade maximized their carbon use, showing an improved physiological performance as a result of higher photosynthetic rates and energy dissipation mechanisms. If the crop were managed with sparse shade, the paradigm that favors the cultivation of cacao under shade would be called into question in the Colombian Amazon and other regions with similar climatic conditions.


Subject(s)
Cacao/growth & development , Conservation of Natural Resources , Photosynthesis/physiology , Plant Leaves/growth & development , Carbon Dioxide/chemistry , Chlorophyll A/chemistry , Colombia , Forestry , Sunlight
14.
Plant Physiol Biochem ; 127: 119-128, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29574258

ABSTRACT

Considering the potential of anthracnose to decrease soybean yield and the need to gain more information regarding its effect on soybean physiology, the present study performed an in-depth analysis of the photosynthetic performance of soybean leaflets challenged with Colletotrichum truncatum by combining chlorophyll a fluorescence images with gas-exchange measurements and photosynthetic pigment pools. There were no significant differences between non-inoculated and inoculated plants in leaf water potential, apparent hydraulic conductance, net CO2 assimilation rate, stomatal conductance to water vapor and transpiration rate. For internal CO2 concentration, significant difference between non-inoculated and inoculated plants occurred only at 36 h after inoculation. Reductions in the values of the chlorophyll a fluorescence parameters [initial fluorescence (F0), maximal fluorescence (Fm), maximal photosystem II quantum yield (Fv/Fm), quantum yield of regulated energy dissipation (Y(NPQ))] and increases in effective PS II quantum yield (Y(II)), quantum yield of non-regulated energy dissipation Y(NO) and photochemical quenching coefficient (qP) were noticed on the necrotic vein tissue in contrast to the surrounding leaf tissue. It appears that the impact of the infection by C. truncatum on the photosynthetic performance of the leaflets was minimal considering the preference of the fungus to colonize the veins.


Subject(s)
Chlorophyll/metabolism , Colletotrichum , Glycine max , Optical Imaging , Plant Diseases/microbiology , Plant Leaves , Water/metabolism , Chlorophyll A , Plant Leaves/metabolism , Plant Leaves/microbiology , Glycine max/metabolism , Glycine max/microbiology
15.
J Agric Food Chem ; 66(21): 5264-5274, 2018 May 30.
Article in English | MEDLINE | ID: mdl-29517900

ABSTRACT

Coffee is one of the most important global crops and provides a livelihood to millions of people living in developing countries. Coffee species have been described as being highly sensitive to climate change, as largely deduced from modeling studies based on predictions of rising temperatures and changing rainfall patterns. Here, we discuss the physiological responses of the coffee tree in the context of present and ongoing climate changes, including drought, heat, and light stresses, and interactions between these factors. We also summarize recent insights on the physiological and agronomic performance of coffee at elevated atmospheric CO2 concentrations and highlight the key role of CO2 in mitigating the harmful effects of heat stress. Evidence is shown suggesting that warming, per se, may be less harmful to coffee suitability than previously estimated, at least under the conditions of an adequate water supply. Finally, we discuss several mitigation strategies to improve crop performance in a changing world.


Subject(s)
Coffea/growth & development , Coffea/physiology , Crops, Agricultural/growth & development , Agricultural Irrigation , Carbon Dioxide/analysis , Climate Change , Coffee , Developing Countries , Droughts , Global Warming , Hot Temperature , Photosynthesis , Plant Leaves/physiology , Rain , Sunlight
16.
Plant Cell Environ ; 41(2): 327-341, 2018 02.
Article in English | MEDLINE | ID: mdl-29044606

ABSTRACT

To identify genomic regions involved in the regulation of fundamental physiological processes such as photosynthesis and respiration, a population of Solanum pennellii introgression lines was analyzed. We determined phenotypes for physiological, metabolic, and growth related traits, including gas exchange and chlorophyll fluorescence parameters. Data analysis allowed the identification of 208 physiological and metabolic quantitative trait loci with 33 of these being associated to smaller intervals of the genomic regions, termed BINs. Eight BINs were identified that were associated with higher assimilation rates than the recurrent parent M82. Two and 10 genomic regions were related to shoot and root dry matter accumulation, respectively. Nine genomic regions were associated with starch levels, whereas 12 BINs were associated with the levels of other metabolites. Additionally, a comprehensive and detailed annotation of the genomic regions spanning these quantitative trait loci allowed us to identify 87 candidate genes that putatively control the investigated traits. We confirmed 8 of these at the level of variance in gene expression. Taken together, our results allowed the identification of candidate genes that most likely regulate photosynthesis, primary metabolism, and plant growth and as such provide new avenues for crop improvement.


Subject(s)
Photosynthesis/genetics , Solanum lycopersicum/genetics , Chlorophyll/metabolism , Genes, Plant/genetics , Genes, Plant/physiology , Solanum lycopersicum/growth & development , Solanum lycopersicum/metabolism , Solanum lycopersicum/physiology , Quantitative Trait Loci/genetics , Quantitative Trait, Heritable , Real-Time Polymerase Chain Reaction
17.
J Exp Bot ; 68(15): 4309-4322, 2017 07 10.
Article in English | MEDLINE | ID: mdl-28922767

ABSTRACT

Over the last decades, most information on the mechanisms underlying tolerance to drought has been gained by considering this stress as a single event that happens just once in the life of a plant, in contrast to what occurs under natural conditions where recurrent drought episodes are the rule. Here we explored mechanisms of drought tolerance in coffee (Coffea canephora) plants from a broader perspective, integrating key aspects of plant physiology and biochemistry. We show that plants exposed to multiple drought events displayed higher photosynthetic rates, which were largely accounted for by biochemical rather than diffusive or hydraulic factors, than those submitted to drought for the first time. Indeed, these plants displayed higher activities of RuBisCO and other enzymes associated with carbon and antioxidant metabolism. Acclimation to multiple drought events involved the expression of trainable genes related to drought tolerance and was also associated with a deep metabolite reprogramming with concordant alterations in central metabolic processes such as respiration and photorespiration. Our results demonstrate that plants exposed to multiple drought cycles can develop a differential acclimation that potentiates their defence mechanisms, allowing them to be kept in an 'alert state' to successfully cope with further drought events.


Subject(s)
Acclimatization , Coffea/physiology , Droughts , Photosynthesis , Brazil , Coffea/genetics
18.
Plant Physiol ; 175(3): 1068-1081, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28899959

ABSTRACT

Malate is a central metabolite involved in a multiplicity of plant metabolic pathways, being associated with mitochondrial metabolism and playing significant roles in stomatal movements. Vacuolar malate transport has been characterized at the molecular level and is performed by at least one carrier protein and two channels in Arabidopsis (Arabidopsis thaliana) vacuoles. The absence of the Arabidopsis tonoplast Dicarboxylate Transporter (tDT) in the tdt knockout mutant was associated previously with an impaired accumulation of malate and fumarate in leaves. Here, we investigated the consequences of this lower accumulation on stomatal behavior and photosynthetic capacity as well as its putative metabolic impacts. Neither the stomatal conductance nor the kinetic responses to dark, light, or high CO2 were highly affected in tdt plants. In addition, we did not observe any impact on stomatal aperture following incubation with abscisic acid, malate, or citrate. Furthermore, an effect on photosynthetic capacity was not observed in the mutant lines. However, leaf mitochondrial metabolism was affected in the tdt plants. Levels of the intermediates of the tricarboxylic acid cycle were altered, and increases in both light and dark respiration were observed. We conclude that manipulation of the tonoplastic organic acid transporter impacted mitochondrial metabolism, while the overall stomatal and photosynthetic capacity were unaffected.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/metabolism , Fumarates/metabolism , Malates/metabolism , Mutation/genetics , Organic Anion Transporters/genetics , Plant Stomata/physiology , Vacuoles/metabolism , Amino Acids/metabolism , Arabidopsis/growth & development , Arabidopsis Proteins/metabolism , Cell Respiration , Chlorophyll/metabolism , Chlorophyll A , Citric Acid Cycle , Fluorescence , Gene Knockout Techniques , Metabolome , Organic Anion Transporters/metabolism , Photoperiod , Photosynthesis , Plant Stomata/cytology , Starch/metabolism
19.
J Plant Physiol ; 206: 125-132, 2016 Nov 01.
Article in English | MEDLINE | ID: mdl-27744227

ABSTRACT

Silicon (Si) has been recognized as a beneficial element to improve rice (Oryza sativa L.) grain yield. Despite some evidence suggesting that this positive effect is observed when Si is supplied along the reproductive growth stage (from panicle initiation to heading), it remains unclear whether its supplementation during distinct growth phases can differentially impact physiological aspects of rice and its yield and the underlying mechanisms. Here, we investigated the effects of additions/removals of Si at different growth stages and their impacts on rice yield components, photosynthetic performance, and expression of genes (Lsi1, Lsi2 and Lsi6) involved in Si distribution within rice shoots. Positive effects of Si on rice production and photosynthesis were manifested when it was specifically supplied during the reproductive growth stage, as demonstrated by: (1) a high crop yield associated with higher grain number and higher 1000-grain weight, whereas the leaf area and whole-plant biomass remained unchanged; (2) an increased sink strength which, in turn, exerted a feed-forward effect on photosynthesis that was coupled with increases in both stomatal conductance and biochemical capacity to fix CO2; (3) higher Si amounts in the developing panicles (and grain husks) in good agreement with a remarkable up-regulation of Lsi6 (and to a lesser extent Lsi1). We suggest that proper levels of Si in these reproductive structures seem to play an as yet unidentified role culminating with higher grain number and size.


Subject(s)
Oryza/growth & development , Photosynthesis/drug effects , Seeds/growth & development , Silicon/pharmacology , Gene Expression Regulation, Plant/drug effects , Genes, Plant , Oryza/drug effects , Oryza/genetics , Principal Component Analysis , Reproduction/drug effects , Seeds/drug effects
20.
J Exp Bot ; 67(1): 341-52, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26503540

ABSTRACT

Coffee (Coffea spp.), a globally traded commodity, is a slow-growing tropical tree species that displays an improved photosynthetic performance when grown under elevated atmospheric CO2 concentrations ([CO2]). To investigate the mechanisms underlying this response, two commercial coffee cultivars (Catuaí and Obatã) were grown using the first free-air CO2 enrichment (FACE) facility in Latin America. Measurements were conducted in two contrasting growth seasons, which were characterized by the high (February) and low (August) sink demand. Elevated [CO2] led to increases in net photosynthetic rates (A) in parallel with decreased photorespiration rates, with no photochemical limitations to A. The stimulation of A by elevated CO2 supply was more prominent in August (56% on average) than in February (40% on average). Overall, the stomatal and mesophyll conductances, as well as the leaf nitrogen and phosphorus concentrations, were unresponsive to the treatments. Photosynthesis was strongly limited by diffusional constraints, particularly at the stomata level, and this pattern was little, if at all, affected by elevated [CO2]. Relative to February, starch pools (but not soluble sugars) increased remarkably (>500%) in August, with no detectable alteration in the maximum carboxylation capacity estimated on a chloroplast [CO2] basis. Upregulation of A by elevated [CO2] took place with no signs of photosynthetic downregulation, even during the period of low sink demand, when acclimation would be expected to be greatest.


Subject(s)
Carbon Dioxide/analysis , Coffea/physiology , Photosynthesis , Coffea/chemistry , Coffea/genetics , Coffea/growth & development , Down-Regulation , Mesophyll Cells/physiology , Models, Biological , Photochemical Processes , Plant Stomata/physiology , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL