Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Nat Commun ; 9(1): 621, 2018 02 12.
Article in English | MEDLINE | ID: mdl-29434196

ABSTRACT

Albumin and IgG have remarkably long serum half-lives due to pH-dependent FcRn-mediated cellular recycling that rescues both ligands from intracellular degradation. Furthermore, increase in half-lives of IgG and albumin-based therapeutics has the potential to improve their efficacies, but there is a great need for robust methods for screening of relative FcRn-dependent recycling ability. Here, we report on a novel human endothelial cell-based recycling assay (HERA) that can be used for such pre-clinical screening. In HERA, rescue from degradation depends on FcRn, and engineered ligands are recycled in a manner that correlates with their half-lives in human FcRn transgenic mice. Thus, HERA is a novel cellular assay that can be used to predict how FcRn-binding proteins are rescued from intracellular degradation.


Subject(s)
Biological Assay/methods , Endothelial Cells/metabolism , Receptors, Fc/metabolism , Animals , Endothelial Cells/chemistry , Humans , Immunoglobulin G/metabolism , Mice , Mice, Transgenic , Protein Binding , Receptors, Fc/chemistry , Receptors, Fc/genetics , Serum Albumin/metabolism
2.
FEBS J ; 275(16): 4097-110, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18637944

ABSTRACT

The neonatal Fc receptor (FcRn) is a major histocompatibility complex class I-related molecule that regulates the half-life of IgG and albumin. In addition, FcRn directs the transport of IgG across both mucosal epithelium and placenta and also enhances phagocytosis in neutrophils. This new knowledge gives incentives for the design of IgG and albumin-based diagnostics and therapeutics. To study FcRn in vitro and to select and characterize FcRn binders, large quantities of soluble human FcRn are needed. In this report, we explored the impact of two free cysteine residues (C48 and C251) of the FcRn heavy chain on the overall structure and function of soluble human FcRn and described an improved bacterial production strategy based on removal of these residues, yielding approximately 70 mg.L(-1) of fermentation of refolded soluble human FcRn. The structural and functional integrity was proved by CD, surface plasmon resonance and MALDI-TOF peptide mapping analyses. The strategy may generally be translated to the large-scale production of other major histocompatibility complex class I-related molecules with nonfunctional unpaired cysteine residues. Furthermore, the anti-FcRn response in goats immunized with the FcRn heavy chain alone was analyzed following affinity purification on heavy chain-coupled Sepharose. Importantly, purified antibodies blocked the binding of both ligands to soluble human FcRn and were thus directed to both binding sites. This implies that the FcRn heavy chain, without prior assembly with human beta2-microglobulin, contains the relevant epitopes found in soluble human FcRn, and is therefore sufficient to obtain binders to either ligand-binding site. This finding will greatly facilitate the selection and characterization of such binders.


Subject(s)
Cysteine/chemistry , Histocompatibility Antigens Class I/chemistry , Histocompatibility Antigens Class I/immunology , Receptors, Fc/chemistry , Receptors, Fc/immunology , Amino Acid Sequence , Cell Line , Cysteine/genetics , Disulfides/chemistry , Escherichia coli/genetics , Histocompatibility Antigens Class I/genetics , Humans , Ligands , Molecular Sequence Data , Mutagenesis, Site-Directed , Receptors, Fc/genetics , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/isolation & purification , Recombinant Fusion Proteins/metabolism , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL