Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Dent Res J (Isfahan) ; 18: 30, 2021.
Article in English | MEDLINE | ID: mdl-34322206

ABSTRACT

BACKGROUND: The flexural strength (FS) of a denture base material is of great concern, and many approaches have been used to strengthen the denture acrylic resins. The present study aimed to evaluate the effect of high-performance polymer (BioHPP) and metal mesh reinforcement on the FS of a heat-cured poly methyl methacrylate (PMMA) acrylic resin. MATERIALS AND METHODS: This experimental study was done on 30 rectangular specimens (64 mm × 13 mm × 3 mm) of a heat-cured PMMA resin. The specimens were divided into three groups (n = 10) to be reinforced with either metal mesh or BioHPP mesh; one group was left nonreinforced, serving as the control group. The FS of specimens was assessed through a 3-point bending test by using a universal testing machine at a crosshead speed of 2 mm/min. Kruskal-Wallis H and Dunn's post hoc tests were used to compare the FS among the groups (alpha = 0.05). RESULTS: The FS in the metal-reinforced group was statistically significantly higher than the two other groups (P < 0.001). However, the FS of the BioHPP-reinforced samples was not statistically significantly higher than the nonreinforced ones (P = 0.614). CONCLUSION: Reinforcing the PMMA with metal mesh significantly enhances its FS while BioHPP has no significant effect on the PMMA FS.

2.
PLoS One ; 16(4): e0249551, 2021.
Article in English | MEDLINE | ID: mdl-33819292

ABSTRACT

Fabricating method may affect the surface properties and biological characteristics of provisional restorations. This study aimed to evaluate the surface roughness, plaque accumulation, and cytotoxicity of provisional restorative materials fabricated by the conventional, digital subtractive and additive methods. Sixty-six bar-shaped specimens (2×4×10 mm) were fabricated by using provisional restorative materials through the conventional, digital subtractive and additive methods (n = 22 per group). Ten specimens of each group were used for surface roughness and plaque accumulation tests, 10 specimens for cytotoxicity assay, and 2 specimens of each group were used for qualitative assessment by scanning electron microscopy. The Ra (roughness average) and Rz (roughness height) values (µm) were measured via profilometer, and visual inspection was performed through scanning electron microscopy. Plaque accumulation of Streptococcus mutans and cytotoxicity on human gingival fibroblast-like cells were evaluated. The data were analyzed with one-way ANOVA and Tukey's post hoc test (α = 0.05). Surface roughness, biofilm accumulation and cytotoxicity were significantly different among the groups (P<0.05). Surface roughness was significantly higher in the conventional group (P<0.05); however, the two other groups were not significantly different (P>0.05). Significantly higher bacterial attachment was observed in the additive group than the subtractive (P<0.001) and conventional group (P = 0.025); while, the conventional and subtractive groups were statistically similar (P = 0.111). Regarding the cytotoxicity, the additive group had significantly higher cell viability than the subtractive group (P = 0.006); yet, the conventional group was not significantly different from the additive (P = 0.354) and subtractive group (P = 0.101). Surface roughness was the highest in conventionally cured group; but, the additive group had the most plaque accumulation and lowest cytotoxicity.


Subject(s)
Biofilms/growth & development , Composite Resins/pharmacology , Dental Materials/pharmacology , Dental Plaque/prevention & control , Dental Restoration, Permanent/methods , Gingiva/drug effects , Streptococcus mutans/physiology , Cell Survival , Gingiva/pathology , Humans , Materials Testing , Surface Properties
3.
J Dent (Shiraz) ; 17(3): 213-8, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27602397

ABSTRACT

STATEMENT OF THE PROBLEM: Dental caries is one the most prevalent diseases that affects humans throughout their lives. Streptococcus mutans (S. mutans) is recognized as the most important microorganism during tooth cariogenicity. Reducing this germ in oral cavity can reduce the rate of tooth decays in humans. PURPOSE: The present study compared the antimicrobial activity of ethanolic extract of Peganum harmala L. seeds and 0.2% chlorhexidine on S. mutans. MATERIALS AND METHOD: Agar diffusion technique and micro broth dilution method were employed to test the antimicrobial effects of these two agents on S. mutans. Moreover, the cytotoxicity of ethanolic extract of P. harmala was studied on Vero cells by MTT (thiazolyl blue tetrazolium dye) colorimetric method. The data were analyzed with descriptive methods. RESULTS: Concentrations of 50, 25, and 12.5 mg/mL of the extract made inhibition zones of bacterial growth around the wells; but, lower concentrations could not inhibit the growth of S. mutans. Besides, the antimicrobial effect of 0.2% chlorhexidine was more than 50 mg/mL of the extract. Minimum inhibitory concentration (MIC) of the extract on S. mutans was 1.83±0.6 mg/mL and minimum bactericidal concentration (MBC) was 4.3±1 mg/mL. The MIC and MBC for 0.2% chlorhexidine were reported to be 0.19 mg/mL, and 0.78 mg/mL, respectively. The extract concentrations more than 0.5 mg/mL were toxic and caused more than 50% Vero cell death. CONCLUSION: Despite the remarkable antimicrobial effects of high concentrations of P. harmala on S. mutans, high cell toxicity of this plant would restrict its in vivo therapeutic use.

SELECTION OF CITATIONS
SEARCH DETAIL
...