Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
PLoS Negl Trop Dis ; 18(3): e0011862, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38527081

ABSTRACT

African populations of the mosquito Aedes aegypti are usually considered less susceptible to infection by human-pathogenic flaviviruses than globally invasive populations found outside Africa. Although this contrast has been well documented for Zika virus (ZIKV), it is unclear to what extent it is true for dengue virus (DENV), the most prevalent flavivirus of humans. Addressing this question is complicated by substantial genetic diversity among DENV strains, most notably in the form of four genetic types (DENV1 to DENV4), that can lead to genetically specific interactions with mosquito populations. Here, we carried out a survey of DENV susceptibility using a panel of seven field-derived Ae. aegypti colonies from across the African range of the species and a colony from Guadeloupe, French West Indies as non-African reference. We found considerable variation in the ability of African Ae. aegypti populations to acquire and replicate a panel of six DENV strains spanning the four DENV types. Although African Ae. aegypti populations were generally less susceptible than the reference non-African population from Guadeloupe, in several instances some African populations were equally or more susceptible than the Guadeloupe population. Moreover, the relative level of susceptibility between African mosquito populations depended on the DENV strain, indicating genetically specific interactions. We conclude that unlike ZIKV susceptibility, there is no clear-cut dichotomy in DENV susceptibility between African and non-African Ae. aegypti. DENV susceptibility of African Ae. aegypti populations is highly heterogeneous and largely governed by the specific pairing of mosquito population and DENV strain.


Subject(s)
Aedes , Dengue Virus , Dengue , Flavivirus , Zika Virus Infection , Zika Virus , Animals , Humans , Dengue Virus/genetics , Zika Virus/genetics , Aedes/genetics , Mosquito Vectors/genetics , Dengue/epidemiology
2.
bioRxiv ; 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38168387

ABSTRACT

African populations of the mosquito Aedes aegypti are usually considered less susceptible to infection by human-pathogenic flaviviruses than globally invasive populations found outside Africa. Although this contrast has been well documented for Zika virus (ZIKV), it is unclear to what extent it is true for dengue virus (DENV), the most prevalent flavivirus of humans. Addressing this question is complicated by substantial genetic diversity among DENV strains, most notably in the form of four genetic types (DENV1 to DENV4), that can lead to genetically specific interactions with mosquito populations. Here, we carried out a continent-wide survey of DENV susceptibility using a panel of field-derived Ae. aegypti colonies from across the African range of the species and a colony from Guadeloupe, French West Indies as non-African reference. We found considerable variation in the ability of African Ae. aegypti populations to acquire and replicate a panel of six DENV strains spanning the four DENV types. Although African Ae. aegypti populations were generally less susceptible than the reference non-African population from Guadeloupe, in several instances some African populations were equally or more susceptible than the Guadeloupe population. Moreover, the relative level of susceptibility between African mosquito populations depended on the DENV strain, indicating genetically specific interactions. We conclude that unlike ZIKV susceptibility, there is no clear-cut dichotomy in DENV susceptibility between African and non-African Ae. aegypti. DENV susceptibility of African Ae. aegypti populations is highly heterogeneous and largely governed by the specific pairing of mosquito population and DENV strain.

3.
PLoS Biol ; 20(10): e3001864, 2022 10.
Article in English | MEDLINE | ID: mdl-36288328

ABSTRACT

The explosive emergence of Zika virus (ZIKV) across the Pacific and Americas since 2007 was associated with hundreds of thousands of human cases and severe outcomes, including congenital microcephaly caused by ZIKV infection during pregnancy. Although ZIKV was first isolated in Uganda, Africa has so far been exempt from large-scale ZIKV epidemics, despite widespread susceptibility among African human populations. A possible explanation for this pattern is natural variation among populations of the primary vector of ZIKV, the mosquito Aedes aegypti. Globally invasive populations of Ae. aegypti outside of Africa are considered effective ZIKV vectors because they are human specialists with high intrinsic ZIKV susceptibility, whereas African populations of Ae. aegypti across the species' native range are predominantly generalists with low intrinsic ZIKV susceptibility, making them less likely to spread viruses in the human population. We test this idea by studying a notable exception to the patterns observed across most of Africa: Cape Verde experienced a large ZIKV outbreak in 2015 to 2016. We find that local Ae. aegypti in Cape Verde have substantial human-specialist ancestry, show a robust behavioral preference for human hosts, and exhibit increased susceptibility to ZIKV infection, consistent with a key role for variation among mosquito populations in ZIKV epidemiology. These findings suggest that similar human-specialist populations of Ae. aegypti in the nearby Sahel region of West Africa, which may be expanding in response to rapid urbanization, could serve as effective vectors for ZIKV in the future.


Subject(s)
Aedes , Epidemics , Zika Virus Infection , Zika Virus , Animals , Humans , Zika Virus/physiology , Cabo Verde , Saliva , Mosquito Vectors
4.
Mol Ecol ; 31(5): 1444-1460, 2022 03.
Article in English | MEDLINE | ID: mdl-34905257

ABSTRACT

In animals with distinct life stages such as holometabolous insects, adult phenotypic variation is often shaped by the environment of immature stages, including their interactions with microbes colonizing larval habitats. Such carry-over effects were previously observed for several adult traits of the mosquito Aedes aegypti after larval exposure to different bacteria, but the mechanistic underpinnings are unknown. Here, we investigated the molecular changes triggered by gnotobiotic larval exposure to different bacteria in Ae. aegypti. We initially screened a panel of 16 bacterial isolates from natural mosquito breeding sites to determine their ability to influence adult life-history traits. We subsequently focused on four bacterial isolates (belonging to Flavobacterium, Lysobacter, Paenibacillus, and Enterobacteriaceae) with significant carry-over effects on adult survival and found that they were associated with distinct transcriptomic profiles throughout mosquito development. Moreover, we detected carry-over effects at the level of gene expression for the Flavobacterium and Paenibacillus isolates. The most prominent transcriptomic changes in gnotobiotic larvae reflected a profound remodelling of lipid metabolism, which translated into phenotypic differences in lipid storage and starvation resistance at the adult stage. Together, our findings indicate that larval exposure to environmental bacteria trigger substantial physiological changes that impact adult fitness, uncovering a possible mechanism underlying carry-over effects of mosquito-bacteria interactions during larval development.


Subject(s)
Aedes , Aedes/microbiology , Animals , Bacteria/genetics , Ecosystem , Larva/microbiology
5.
Emerg Microbes Infect ; 10(1): 1346-1357, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34139961

ABSTRACT

Dengue virus (DENV) evolutionary dynamics are characterized by frequent DENV genotype/lineage replacements, potentially associated with changes in disease severity and human immunity. New Caledonia (NC) and Cambodia, two contrasted epidemiological settings, respectively experienced a DENV-1 genotype IV to I replacement in 2012 and a DENV-1 genotype I lineage 3-4 replacement in 2005-2007, both followed by a massive dengue outbreak. However, their underlying evolutionary drivers have not been elucidated. Here, we tested the hypothesis that these genotype/lineage switches reflected a higher transmission fitness of the replacing DENV genotype/lineage in the mosquito vector using in vivo competition experiments. For this purpose, field-derived Aedes aegypti from NC and Cambodia were orally challenged with epidemiologically relevant pairs of four DENV-1 genotype I and IV strains from NC or four DENV-1 genotype I lineage 3 and 4 strains from Cambodia, respectively. The relative transmission fitness of each DENV-1 genotype/lineage was measured by quantitative RT-PCR for infection, dissemination, and transmission rates. Results showed a clear transmission fitness advantage of the replacing DENV-1 genotype I from NC within the vector. A similar but more subtle pattern was observed for the DENV-1 lineage 4 replacement in Cambodia. Our results support the hypothesis that vector-driven selection contributed to the DENV-1 genotype/lineage replacements in these two contrasted epidemiological settings, and reinforce the idea that natural selection taking place within the mosquito vector plays an important role in DENV short-term evolutionary dynamics.


Subject(s)
Aedes/virology , Dengue Virus/genetics , Dengue/virology , Mosquito Vectors/virology , Selection, Genetic , Animals , Cambodia/epidemiology , Dengue/epidemiology , Dengue/transmission , Dengue Virus/physiology , Disease Outbreaks , Genetic Fitness , Genotype , Humans , New Caledonia/epidemiology , Phylogeny , Saliva/virology
6.
Nat Commun ; 12(1): 916, 2021 02 10.
Article in English | MEDLINE | ID: mdl-33568638

ABSTRACT

The global emergence of Zika virus (ZIKV) revealed the unprecedented ability for a mosquito-borne virus to cause congenital birth defects. A puzzling aspect of ZIKV emergence is that all human outbreaks and birth defects to date have been exclusively associated with the Asian ZIKV lineage, despite a growing body of laboratory evidence pointing towards higher transmissibility and pathogenicity of the African ZIKV lineage. Whether this apparent paradox reflects the use of relatively old African ZIKV strains in most laboratory studies is unclear. Here, we experimentally compare seven low-passage ZIKV strains representing the recently circulating viral genetic diversity. We find that recent African ZIKV strains display higher transmissibility in mosquitoes and higher lethality in both adult and fetal mice than their Asian counterparts. We emphasize the high epidemic potential of African ZIKV strains and suggest that they could more easily go unnoticed by public health surveillance systems than Asian strains due to their propensity to cause fetal loss rather than birth defects.


Subject(s)
Zika Virus Infection/mortality , Zika Virus Infection/virology , Zika Virus/physiology , Zika Virus/pathogenicity , Aedes/physiology , Aedes/virology , Africa , Animals , Asia , Female , Humans , Male , Mice , Phylogeny , Virulence , Zika Virus/classification , Zika Virus/genetics , Zika Virus Infection/transmission
7.
Science ; 370(6519): 991-996, 2020 11 20.
Article in English | MEDLINE | ID: mdl-33214283

ABSTRACT

The drivers and patterns of zoonotic virus emergence in the human population are poorly understood. The mosquito Aedes aegypti is a major arbovirus vector native to Africa that invaded most of the world's tropical belt over the past four centuries, after the evolution of a "domestic" form that specialized in biting humans and breeding in water storage containers. Here, we show that human specialization and subsequent spread of A. aegypti out of Africa were accompanied by an increase in its intrinsic ability to acquire and transmit the emerging human pathogen Zika virus. Thus, the recent evolution and global expansion of A. aegypti promoted arbovirus emergence not solely through increased vector-host contact but also as a result of enhanced vector susceptibility.


Subject(s)
Aedes/virology , Host Microbial Interactions/genetics , Mosquito Vectors/virology , Zika Virus Infection/transmission , Zika Virus/physiology , Aedes/genetics , Animals , Humans , Mice , Mice, Inbred C57BL , Mosquito Vectors/genetics
8.
Virus Evol ; 6(1): veaa018, 2020 Jan.
Article in English | MEDLINE | ID: mdl-32368352

ABSTRACT

Flaviviruses encompass not only medically relevant arthropod-borne viruses (arboviruses) but also insect-specific flaviviruses (ISFs) that are presumably maintained primarily through vertical transmission in the insect host. Interestingly, ISFs are commonly found infecting important arbovirus vectors such as the mosquito Aedes aegypti. Cell-fusing agent virus (CFAV) was the first described ISF of mosquitoes more than four decades ago. Despite evidence for widespread CFAV infections in A.aegypti populations and for CFAV potential to interfere with arbovirus transmission, little is known about CFAV evolutionary history. Here, we generated six novel CFAV genome sequences by sequencing three new virus isolates and subjecting three mosquito samples to untargeted viral metagenomics. We used these new genome sequences together with published ones to perform a global phylogenetic analysis of CFAV genetic diversity. Although there was some degree of geographical clustering among CFAV sequences, there were also notable discrepancies between geography and phylogeny. In particular, CFAV sequences from Cambodia and Thailand diverged significantly, despite confirmation that A.aegypti populations from both locations are genetically close. The apparent phylogenetic discrepancy between CFAV and its A.aegypti host in Southeast Asia indicates that other factors than host population structure shape CFAV genetic diversity.

9.
Sci Rep ; 10(1): 7750, 2020 05 08.
Article in English | MEDLINE | ID: mdl-32385369

ABSTRACT

Many emerging arboviruses of global public health importance, such as dengue virus (DENV) and yellow fever virus (YFV), originated in sylvatic transmission cycles involving wild animals and forest-dwelling mosquitoes. Arbovirus emergence in the human population typically results from spillover transmission via bridge vectors, which are competent mosquitoes feeding on both humans and wild animals. Another related, but less studied concern, is the risk of 'spillback' transmission from humans into novel sylvatic cycles. We colonized a sylvatic population of Aedes malayensis from a forested area of the Nakai district in Laos to evaluate its potential as an arbovirus bridge vector. We found that this Ae. malayensis population was overall less competent for DENV and YFV than an urban population of Aedes aegypti. Olfactometer experiments showed that our Ae. malayensis colony did not display any detectable attraction to human scent in laboratory conditions. The relatively modest vector competence for DENV and YFV, combined with a lack of detectable attraction to human odor, indicate a low potential for this sylvatic Ae. malayensis population to act as an arbovirus bridge vector. However, we caution that opportunistic blood feeding on humans by sylvatic Ae. malayensis may occasionally contribute to bridge sylvatic and human transmission cycles.


Subject(s)
Aedes/physiology , Arboviruses/physiology , Mosquito Vectors/physiology , Aedes/virology , Animals , Conservation of Natural Resources , Humans , Laos , Mosquito Vectors/virology , Odorants , Risk , Species Specificity
10.
iScience ; 23(2): 100870, 2020 Feb 21.
Article in English | MEDLINE | ID: mdl-32059176

ABSTRACT

Diseases caused by mosquito-borne viruses have been on the rise for the last decades, and novel methods aiming to use laboratory-engineered mosquitoes that are incapable of carrying viruses have been developed to reduce pathogen transmission. This has stimulated efforts to identify optimal target genes that are naturally involved in mosquito antiviral defenses or required for viral replication. Here, we investigated the role of a member of the Tudor protein family, Tudor-SN, upon dengue virus infection in the mosquito Aedes aegypti. Tudor-SN knockdown reduced dengue virus replication in the midgut of Ae. aegypti females. In immunofluorescence assays, Tudor-SN localized to the nucleolus in both Ae. aegypti and Aedes albopictus cells. A reporter assay and small RNA profiling demonstrated that Tudor-SN was not required for RNA interference function in vivo. Collectively, these results defined a novel proviral role for Tudor-SN upon early dengue virus infection of the Ae. aegypti midgut.

11.
PLoS Negl Trop Dis ; 13(10): e0007783, 2019 10.
Article in English | MEDLINE | ID: mdl-31589616

ABSTRACT

The case-fatality rate of yellow fever virus (YFV) is one of the highest among arthropod-borne viruses (arboviruses). Although historically, the Asia-Pacific region has remained free of YFV, the risk of introduction has never been higher due to the increasing influx of people from endemic regions and the recent outbreaks in Africa and South America. Singapore is a global hub for trade and tourism and therefore at high risk for YFV introduction. Effective control of the main domestic mosquito vector Aedes aegypti in Singapore has failed to prevent re-emergence of dengue, chikungunya and Zika viruses in the last two decades, raising suspicions that peridomestic mosquito species untargeted by domestic vector control measures may contribute to arbovirus transmission. Here, we provide empirical evidence that the peridomestic mosquito Aedes malayensis found in Singapore can transmit YFV. Our laboratory mosquito colony recently derived from wild Ae. malayensis in Singapore was experimentally competent for YFV to a similar level as Ae. aegypti controls. In addition, we captured Ae. malayensis females in one human-baited trap during three days of collection, providing preliminary evidence that host-vector contact may occur in field conditions. Finally, we detected Ae. malayensis eggs in traps deployed in high-rise building areas of Singapore. We conclude that Ae. malayensis is a competent vector of YFV and re-emphasize that vector control methods should be extended to target peridomestic vector species.


Subject(s)
Aedes/virology , Mosquito Vectors/virology , Yellow Fever/virology , Yellow fever virus/physiology , Aedes/growth & development , Animals , Female , Host-Pathogen Interactions/physiology , Humans , Mosquito Vectors/physiology , Saliva/virology , Singapore/epidemiology , Yellow Fever/epidemiology , Yellow Fever/transmission
12.
J Virol ; 93(18)2019 09 15.
Article in English | MEDLINE | ID: mdl-31243123

ABSTRACT

Aedes aegypti mosquitoes are the main vectors of arthropod-borne viruses (arboviruses) of public health significance, such as the flaviviruses dengue virus (DENV) and Zika virus (ZIKV). Mosquitoes are also the natural hosts of a wide range of viruses that are insect specific, raising the question of their influence on arbovirus transmission in nature. Cell-fusing agent virus (CFAV) was the first described insect-specific flavivirus, initially discovered in an A. aegypti cell line and subsequently detected in natural A. aegypti populations. It was recently shown that DENV and the CFAV strain isolated from the A. aegypti cell line have mutually beneficial interactions in mosquito cells in culture. However, whether natural strains of CFAV and DENV interact in live mosquitoes is unknown. Using a wild-type CFAV isolate recently derived from Thai A. aegypti mosquitoes, we found that CFAV negatively interferes with both DENV type 1 and ZIKV in vitro and in vivo For both arboviruses, prior infection by CFAV reduced the dissemination titer in mosquito head tissues. Our results indicate that the interactions observed between arboviruses and the CFAV strain derived from the cell line might not be a relevant model of the viral interference that we observed in vivo Overall, our study supports the hypothesis that insect-specific flaviviruses may contribute to reduce the transmission of human-pathogenic flaviviruses.IMPORTANCE The mosquito Aedes aegypti carries several arthropod-borne viruses (arboviruses) that are pathogenic to humans, including dengue and Zika viruses. Interestingly, A. aegypti is also naturally infected with insect-only viruses, such as cell-fusing agent virus. Although interactions between cell-fusing agent virus and dengue virus have been documented in mosquito cells in culture, whether wild strains of cell-fusing agent virus interfere with arbovirus transmission by live mosquitoes was unknown. We used an experimental approach to demonstrate that cell-fusing agent virus infection reduces the propagation of dengue and Zika viruses in A. aegypti mosquitoes. These results support the idea that insect-only viruses in nature can modulate the ability of mosquitoes to carry arboviruses of medical significance and that they could possibly be manipulated to reduce arbovirus transmission.


Subject(s)
Flavivirus/metabolism , Mosquito Vectors/virology , Viral Interference/physiology , Aedes/virology , Animals , Arboviruses/metabolism , Cell Line , Dengue/virology , Dengue Virus/isolation & purification , Dengue Virus/metabolism , Flavivirus/genetics , Flavivirus/isolation & purification , Humans , Insect Viruses , Phylogeny , Virus Replication/physiology , Zika Virus/isolation & purification , Zika Virus/metabolism , Zika Virus Infection/virology
13.
Dev Comp Immunol ; 85: 95-107, 2018 08.
Article in English | MEDLINE | ID: mdl-29635006

ABSTRACT

Bats are known to harbor many zoonotic viruses, some of which are pathogenic to other mammals while they seem to be harmless in bats. As the interferon (IFN) response represents the first line of defense against viral infections in mammals, it is hypothesized that activation of the IFN system is one of the mechanisms enabling bats to co-exist with viruses. We have previously reported induction of type I IFN in a cell line from the common vampire bat, Desmodus rotundus, upon polyinosinic:polycytidylic acid (poly(I:C)) stimulation. To deepen our knowledge on D. rotundus' IFN-I antiviral response, we molecularly characterized three interferon-stimulated genes (ISGs), OAS1, PKR and ADAR1, closely implicated in the IFN-I antiviral response, and tested their functionality in our cellular model. We first found that D. rotundus encoded two OAS1 paralogs, OAS1a and OAS1b, and that the functional domains of the four ISGs characterized were highly conserved with those of other mammals. Despite their significant transcription level in the absence of stimulation, the transcription of the four ISGs characterized was enhanced by poly(I:C). In addition, the transcription of OAS1a and OAS1b appears to be differentially regulated. These findings demonstrate an active ISG antiviral response in D. rotundus in which OAS1b may play an important role.


Subject(s)
2',5'-Oligoadenylate Synthetase/genetics , Adenosine Deaminase/genetics , Antiviral Agents/pharmacology , Chiroptera/genetics , Interferons/pharmacology , eIF-2 Kinase/genetics , Animals , Cell Line , Poly I-C/genetics , Transcription, Genetic/drug effects , Transcription, Genetic/genetics , Virus Diseases/genetics
14.
Dev Comp Immunol ; 81: 1-7, 2018 04.
Article in English | MEDLINE | ID: mdl-29122634

ABSTRACT

Though the common vampire bat, Desmodus rotundus, is known as the main rabies virus reservoir in Latin America, no tools are available to investigate its antiviral innate immune system. To characterize the IFN-I pathway, we established an immortalized cell line from a D. rotundus fetal lung named FLuDero. Then we molecularly characterized some of the Toll-like receptors (TLR3, 7, 8 and 9), the three RIG-I-like receptor members, as well as IFNα1 and IFNß. Challenging the FLuDero cell line with poly (I:C) resulted in an up-regulation of both IFNα1 and IFNß and the induction of expression of the different pattern recognition receptors characterized. These findings provide evidence of the intact dsRNA recognition machinery and the IFN-I signaling pathway in our cellular model. Herein, we generated a sum of insightful specific molecular and cellular tools that will serve as a useful model to study virus-host interactions of the common vampire bat.


Subject(s)
Chiroptera/immunology , DEAD Box Protein 58/genetics , Lung/cytology , Rabies virus/physiology , Toll-Like Receptors/genetics , Animals , Cell Line, Transformed , Chiroptera/genetics , Cloning, Molecular , Disease Reservoirs , Gene Expression Regulation , Host-Pathogen Interactions , Humans , Immunity, Innate , Interferon-alpha/metabolism , Interferon-beta/metabolism , Lung/immunology , Poly I-C/immunology , RNA, Double-Stranded/immunology , Signal Transduction
15.
Sci Rep ; 7(1): 16129, 2017 11 23.
Article in English | MEDLINE | ID: mdl-29170442

ABSTRACT

PKR is a cellular kinase involved in the regulation of the integrative stress response (ISR) and pro-inflammatory pathways. Two N-terminal dsRNA Binding Domains (DRBD) are required for activation of PKR, by interaction with either dsRNA or PACT, another cellular DRBD-containing protein. A role for PKR and PACT in inflammatory processes linked to neurodegenerative diseases has been proposed and raised interest for pharmacological PKR inhibitors. However, the role of PKR in inflammation is subject to controversy. We identified the flavonoid luteolin as an inhibitor of the PKR/PACT interaction at the level of their DRBDs using high-throughput screening of chemical libraries by homogeneous time-resolved fluorescence. This was further validated using NanoLuc-Based Protein Complementation Assay. Luteolin inhibits PKR phosphorylation, the ISR and the induction of pro-inflammatory cytokines in human THP1 macrophages submitted to oxidative stress and toll-like receptor (TLR) agonist. Similarly, luteolin inhibits induction of pro-inflammatory cytokines in murine microglial macrophages. In contrast, luteolin increased activation of the inflammasome, in a PKR-independent manner. Collectively, these data delineate the importance of PKR in the inflammation process to the ISR and induction of pro-inflammatory cytokines. Pharmacological inhibitors of PKR should be used in combination with drugs targeting directly the inflammasome.


Subject(s)
Inflammation/metabolism , RNA-Binding Proteins/metabolism , eIF-2 Kinase/metabolism , HEK293 Cells , Humans , Inflammation/immunology , Phosphorylation/genetics , Phosphorylation/physiology , Protein Binding/genetics , Protein Binding/physiology , RNA, Double-Stranded/genetics , RNA, Double-Stranded/metabolism , RNA-Binding Proteins/genetics , eIF-2 Kinase/genetics
16.
J Virol ; 87(14): 8241-6, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23658442

ABSTRACT

Upon infection with Bluetongue virus (BTV), an arthropod-borne virus, type I interferon (IFN-I) is produced in vivo and in vitro. IFN-I is essential for the establishment of an antiviral cellular response, and most if not all viruses have elaborated strategies to counteract its action. In this study, we assessed the ability of BTV to interfere with IFN-I synthesis and identified the nonstructural viral protein NS3 as an antagonist of the IFN-I system.


Subject(s)
Bluetongue virus/immunology , Immunity, Innate/immunology , Interferon Type I/antagonists & inhibitors , Signal Transduction/immunology , Viral Nonstructural Proteins/metabolism , Blotting, Western , Enzyme-Linked Immunosorbent Assay , HEK293 Cells , Humans , Immunity, Innate/drug effects , Interferon Type I/biosynthesis , Luciferases , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction/drug effects , Viral Nonstructural Proteins/pharmacology
17.
Viruses ; 4(11): 2598-635, 2012 Oct 29.
Article in English | MEDLINE | ID: mdl-23202496

ABSTRACT

The double-stranded RNA-dependent protein kinase PKR plays multiple roles in cells, in response to different stress situations. As a member of the interferon (IFN)­Stimulated Genes, PKR was initially recognized as an actor in the antiviral action of IFN, due to its ability to control translation, through phosphorylation, of the alpha subunit of eukaryotic initiation factor 2 (eIF2a). As such, PKR participates in the generation of stress granules, or autophagy and a number of viruses have designed strategies to inhibit its action. However, PKR deficient mice resist most viral infections, indicating that PKR may play other roles in the cell other than just acting as an antiviral agent. Indeed, PKR regulates several signaling pathways, either as an adapter protein and/or using its kinase activity. Here we review the role of PKR as an eIF2a kinase, its participation in the regulation of the NF-kB, p38MAPK and insulin pathways, and we focus on its role during infection with the hepatitis C virus (HCV). PKR binds the HCV IRES RNA, cooperates with some functions of the HCV core protein and may represent a target for NS5A or E2. Novel data points out for a role of PKR as a pro-HCV agent, both as an adapter protein and as an eIF2a-kinase, and in cooperation with the di-ubiquitin-like protein ISG15. Developing pharmaceutical inhibitors of PKR may help in resolving some viral infections as well as stress-related damages.


Subject(s)
Hepatitis C/metabolism , RNA, Double-Stranded/metabolism , Signal Transduction , Stress, Physiological , eIF-2 Kinase/metabolism , Animals , Enzyme Activation , Hepatitis C/genetics , Hepatitis C/immunology , Humans , Protein Transport , eIF-2 Kinase/genetics
18.
J Virol ; 86(10): 5817-28, 2012 May.
Article in English | MEDLINE | ID: mdl-22438548

ABSTRACT

Dendritic cells (DCs), especially plasmacytoid DCs (pDCs), produce large amounts of alpha/beta interferon (IFN-α/ß) upon infection with DNA or RNA viruses, which has impacts on the physiopathology of the viral infections and on the quality of the adaptive immunity. However, little is known about the IFN-α/ß production by DCs during infections by double-stranded RNA (dsRNA) viruses. We present here novel information about the production of IFN-α/ß induced by bluetongue virus (BTV), a vector-borne dsRNA Orbivirus of ruminants, in sheep primary DCs. We found that BTV induced IFN-α/ß in skin lymph and in blood in vivo. Although BTV replicated in a substantial fraction of the conventional DCs (cDCs) and pDCs in vitro, only pDCs responded to BTV by producing a significant amount of IFN-α/ß. BTV replication in pDCs was not mandatory for IFN-α/ß production since it was still induced by UV-inactivated BTV (UV-BTV). Other inflammatory cytokines, including tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6), and IL-12p40, were also induced by UV-BTV in primary pDCs. The induction of IFN-α/ß required endo-/lysosomal acidification and maturation. However, despite being an RNA virus, UV-BTV did not signal through Toll-like receptor 7 (TLR7) for IFN-α/ß induction. In contrast, pathways involving the MyD88 adaptor and kinases dsRNA-activated protein kinase (PKR) and stress-activated protein kinase (SAPK)/Jun N-terminal protein kinase (JNK) were implicated. This work highlights the importance of pDCs for the production of innate immunity cytokines induced by a dsRNA virus, and it shows that a dsRNA virus can induce IFN-α/ß in pDCs via a novel TLR-independent and Myd88-dependent pathway. These findings have implications for the design of efficient vaccines against dsRNA viruses.


Subject(s)
Bluetongue virus/immunology , Bluetongue/immunology , Dendritic Cells/immunology , Interferon Type I/immunology , Myeloid Differentiation Factor 88/immunology , Toll-Like Receptor 7/immunology , Toll-Like Receptor 8/immunology , Animals , Bluetongue/genetics , Bluetongue/virology , Bluetongue virus/genetics , Bluetongue virus/physiology , Cells, Cultured , Cytokines/genetics , Cytokines/immunology , Dendritic Cells/virology , Female , Immunity, Innate , Interferon Type I/genetics , Membrane Glycoproteins , Myeloid Differentiation Factor 88/genetics , Receptors, Interleukin-1 , Sheep/immunology , Sheep/virology , Signal Transduction , Toll-Like Receptor 7/genetics , Toll-Like Receptor 8/genetics
19.
PLoS Pathog ; 7(10): e1002289, 2011 Oct.
Article in English | MEDLINE | ID: mdl-22022264

ABSTRACT

Recognition of viral RNA structures by the intracytosolic RNA helicase RIG-I triggers induction of innate immunity. Efficient induction requires RIG-I ubiquitination by the E3 ligase TRIM25, its interaction with the mitochondria-bound MAVS protein, recruitment of TRAF3, IRF3- and NF-κB-kinases and transcription of Interferon (IFN). In addition, IRF3 alone induces some of the Interferon-Stimulated Genes (ISGs), referred to as early ISGs. Infection of hepatocytes with Hepatitis C virus (HCV) results in poor production of IFN despite recognition of the viral RNA by RIG-I but can lead to induction of early ISGs. HCV was shown to inhibit IFN production by cleaving MAVS through its NS3/4A protease and by controlling cellular translation through activation of PKR, an eIF2α-kinase containing dsRNA-binding domains (DRBD). Here, we have identified a third mode of control of IFN induction by HCV. Using HCVcc and the Huh7.25.CD81 cells, we found that HCV controls RIG-I ubiquitination through the di-ubiquitine-like protein ISG15, one of the early ISGs. A transcriptome analysis performed on Huh7.25.CD81 cells silenced or not for PKR and infected with JFH1 revealed that HCV infection leads to induction of 49 PKR-dependent genes, including ISG15 and several early ISGs. Silencing experiments revealed that this novel PKR-dependent pathway involves MAVS, TRAF3 and IRF3 but not RIG-I, and that it does not induce IFN. Use of PKR inhibitors showed that this pathway requires the DRBD but not the kinase activity of PKR. We then demonstrated that PKR interacts with HCV RNA and MAVS prior to RIG-I. In conclusion, HCV recruits PKR early in infection as a sensor to trigger induction of several IRF3-dependent genes. Among those, ISG15 acts to negatively control the RIG-I/MAVS pathway, at the level of RIG-I ubiquitination.These data give novel insights in the machinery involved in the early events of innate immune response.


Subject(s)
Cytokines/metabolism , Hepacivirus/immunology , Hepacivirus/metabolism , Interferons/biosynthesis , Receptors, Retinoic Acid/metabolism , Ubiquitins/metabolism , eIF-2 Kinase/metabolism , Adaptor Proteins, Signal Transducing/biosynthesis , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Cell Line , Cytokines/biosynthesis , Cytokines/genetics , Gene Expression Profiling , Hepacivirus/genetics , Hepatocytes/metabolism , Hepatocytes/pathology , Hepatocytes/virology , Humans , Interferon Regulatory Factor-3/biosynthesis , Interferon Regulatory Factor-3/genetics , Interferon Regulatory Factor-3/metabolism , Interferons/genetics , RNA Interference , RNA, Small Interfering , RNA, Viral/metabolism , Receptors, Retinoic Acid/biosynthesis , Receptors, Retinoic Acid/genetics , Signal Transduction , TNF Receptor-Associated Factor 3/biosynthesis , TNF Receptor-Associated Factor 3/genetics , TNF Receptor-Associated Factor 3/metabolism , Ubiquitination , Ubiquitins/biosynthesis , Ubiquitins/genetics , eIF-2 Kinase/biosynthesis , eIF-2 Kinase/genetics
20.
PLoS One ; 5(5): e10575, 2010 May 11.
Article in English | MEDLINE | ID: mdl-20485506

ABSTRACT

Hepatitis C virus is a poor inducer of interferon (IFN), although its structured viral RNA can bind the RNA helicase RIG-I, and activate the IFN-induction pathway. Low IFN induction has been attributed to HCV NS3/4A protease-mediated cleavage of the mitochondria-adapter MAVS. Here, we have investigated the early events of IFN induction upon HCV infection, using the cell-cultured HCV JFH1 strain and the new HCV-permissive hepatoma-derived Huh7.25.CD81 cell subclone. These cells depend on ectopic expression of the RIG-I ubiquitinating enzyme TRIM25 to induce IFN through the RIG-I/MAVS pathway. We observed induction of IFN during the first 12 hrs of HCV infection, after which a decline occurred which was more abrupt at the protein than at the RNA level, revealing a novel HCV-mediated control of IFN induction at the level of translation. The cellular protein kinase PKR is an important regulator of translation, through the phosphorylation of its substrate the eIF2alpha initiation factor. A comparison of the expression of luciferase placed under the control of an eIF2alpha-dependent (IRES(EMCV)) or independent (IRES(HCV)) RNA showed a specific HCV-mediated inhibition of eIF2alpha-dependent translation. We demonstrated that HCV infection triggers the phosphorylation of both PKR and eIF2alpha at 12 and 15 hrs post-infection. PKR silencing, as well as treatment with PKR pharmacological inhibitors, restored IFN induction in JFH1-infected cells, at least until 18 hrs post-infection, at which time a decrease in IFN expression could be attributed to NS3/4A-mediated MAVS cleavage. Importantly, both PKR silencing and PKR inhibitors led to inhibition of HCV yields in cells that express functional RIG-I/MAVS. In conclusion, here we provide the first evidence that HCV uses PKR to restrain its ability to induce IFN through the RIG-I/MAVS pathway. This opens up new possibilities to assay PKR chemical inhibitors for their potential to boost innate immunity in HCV infection.


Subject(s)
Hepacivirus/immunology , Interferons/biosynthesis , eIF-2 Kinase/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Cell Line, Tumor , Enzyme Activation/drug effects , Eukaryotic Initiation Factor-2/metabolism , Hepacivirus/drug effects , Hepatitis C/immunology , Hepatitis C/virology , Humans , Kinetics , Models, Immunological , Phosphorylation/drug effects , Protein Biosynthesis , Protein Kinase Inhibitors/pharmacology , Substrate Specificity/drug effects , Time Factors , Transcription Factors/metabolism , Tripartite Motif Proteins , Ubiquitin-Protein Ligases/metabolism , eIF-2 Kinase/antagonists & inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL
...