Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Aquat Toxicol ; 212: 47-53, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31071656

ABSTRACT

The increasing production of engineered inorganic nanoparticles (EINPs) elevates their release into aquatic ecosystems raising concerns about associated environmental risks. Numerous investigations indicate sediments as the final sink, facilitating the exposure of benthic species to EINPs. Although reports of sub-lethal EINP effects on benthic species are increasing, the importance of exposure pathways (either waterborne or dietary) is poorly understood. This study investigates the influence of two EINPs, namely titanium dioxide (nTiO2) and silver (nAg), on the benthic model organism Gammarus fossarum specifically addressing the relative relevance of these pathways. For each type of EINP an individual 30-day long bioassay was conducted, applying a two-factorial test design. The factors include the presence or absence of the EINPs (nTiO2: ∼80 nm, 4 mg/L or nAg: ∼30 nm, 0.125 mg/L; n = 30) in the water phase (waterborne), combined with a preceding 6-day long aging of their diet (black alder leaves) also in presence or absence of the EINPs (dietary). Response variables were mortality, food consumption, feces production and energy assimilation. Additionally, the physiological fitness was examined using lipid content and dry weight of the organisms as measures. Results revealed a significantly reduced energy assimilation (up to ∼30%) in G. fossarum induced by waterborne exposure towards nTiO2. In contrast, the dietary exposure towards nAg significantly increased the organisms' energy assimilation (up to ∼50%). Hence, exposure pathway dependent effects of EINPs cannot be generalized and remain particle specific resting upon their intrinsic properties affecting their potential to interact with the surrounding environment. As a result of the different properties of the EINPs used in this study, we clearly demonstrated variations in type and direction of observed effects in G. fossarum. The results of the present study are thus supporting current approaches for nano-specific grouping that might enable an enhanced accuracy in predicting EINP effects facilitating their environmental risk assessment.


Subject(s)
Amphipoda/drug effects , Environmental Exposure , Metal Nanoparticles/toxicity , Silver/toxicity , Titanium/toxicity , Animals , Biomass , Energy Metabolism/drug effects , Feces , Feeding Behavior/drug effects , Lipids/analysis , Particle Size , Plant Leaves/metabolism , Water Pollutants, Chemical/toxicity
2.
Sci Total Environ ; 663: 518-526, 2019 May 01.
Article in English | MEDLINE | ID: mdl-30716643

ABSTRACT

Besides their economic value, engineered inorganic nanoparticles (EINPs) may pose a risk for the integrity of ecosystems. Among EINPs, titanium dioxide (nTiO2) is frequently used and released into surface waters in the µg range. There, nTiO2 interacts with environmental factors, influencing its potential to cause adverse effects on aquatic life. Although factors like ultra violet (UV) light and natural organic matter (NOM) are considered as ubiquitous, their joint impact on nTiO2-induced toxicity is poorly understood. This study addressed the acute toxicity of nTiO2 (P25; 0.00-64.00 mg/L; ~60 nm) at ambient UV light (0.00-5.20 W UVA/m2) and NOM levels (seaweed extract; 0.00-4.00 mg TOC/L), using the immobility of Daphnia magna as response variable. Confirming previous studies, effects caused by nTiO2 were elevated with increasing UV radiation (up to ~280 fold) and mitigated by higher NOM levels (up to ~12 fold), possibly due to reduced reactive oxygen species (ROS; measured as •OH radicals) formation at lower UV intensities. However, contradicting to former studies, nTiO2-mediated ROS formation was not proportional to increasing NOM levels: lower concentrations (0.04-0.40 mg TOC/L) slightly diminished, whereas a higher concentration (4.00 mg TOC/L) promoted the ROS quantity, irrespective of UV intensity. Measured ROS levels do not fully explain the observed nTiO2-induced toxicity, whereas increasing acetylcholinesterase and glutathione-S-transferase activities in daphnids (in presence of 8.00 mg/L nTiO2 and elevated UV intensity) point towards neurotoxic and oxidative stress as a driver for the observed effects. Hence, despite higher •OH levels in the treatments where 4.00 mg TOC/L were present, NOM was still capable of reducing nTiO2-induced stress and ultimately adverse effects in aquatic life.


Subject(s)
Daphnia/drug effects , Humic Substances/analysis , Metal Nanoparticles/toxicity , Titanium/toxicity , Ultraviolet Rays/adverse effects , Water Pollutants, Chemical/toxicity , Animals , Toxicity Tests, Acute
SELECTION OF CITATIONS
SEARCH DETAIL