Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Heliyon ; 10(2): e24707, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38304796

ABSTRACT

SOx emissions are primarily caused by compounds containing sulfur in petroleum and fuels, which lead to severe air pollution. For this reason, it is necessary to develop a fast and simple desulfurization method in order to comply with ever-increasing environmental regulations. The newly discovered piezo-catalyst nanocomposite CexOy/SrO can convert mechanical energy directly into chemical energy, thereby enabling mechanically oxidative sulfur desulfurization. 320 W of bath sonication were used to polarize and activate the prepared piezo-catalyst nanocomposite CexOy/SrO for sulfur removal from thiophene and dibenzothiophene as model fuels and kerosene as a real fuel. Using uniform and spherical CeO2/SrO nanocomposites resulted in the highest desulfurization rates of 95.4 %, 97.3 %, and 59.7 %, respectively, for thiophene and dibenzothiophene. This study examined the effect of several parameters, such as sulfur concentration, pH of fuel, dosage of CexOy/SrO nanocomposite, power and time of ultrasonic, and shaking time, on the piezo-desulfurization of thiophene (TP) and dibenzothiophene (DBTP). To identify the major active species in piezo desulfurization, radical trapping experiments were conducted. This study investigated the possibility of reusing the catalyst, and the piezo-desulfurization activity that was demonstrated in the removal of TP and DBTP after 11 cycles as well as the ability of the catalyst to remove real fuel even after 14 cycles was promising. As the kinetic results show, the reaction follows the second order with K = 0.0050. Also, thermodynamic results showed the oxidation of sulfide to sulfoxide and sulfoxide is endothermic. Activation energy for second order rate constant is (3.824 Kj/mole). 0.0236 mol-1. Sec-1 was calculated for Arrhenius Constant.

2.
Comb Chem High Throughput Screen ; 16(6): 458-62, 2013 Jul.
Article in English | MEDLINE | ID: mdl-22931308

ABSTRACT

Silica nanoparticles were synthesized from rice husk ash at room temperature by using high energy planetary ball mill. The milling time and mill rotational speed were varied in four levels. The morphology of the synthesized powders was investigated by the FE-SEM and TEM image as well as XRD patterns. The results have revealed that the nano-sized amorphous silica particles are formed after about 6 h ball milling and they are spherical in shape. The average particle size of the silica powders is found to be around 70 nm which decreases with increasing ball milling time or mill rotational speed. The as-synthesized silica nanoparticles were subsequently employed as drug carrier to investigate in vitro release behavior of Penicillin-G in simulated body fluid. UV-Vis spectroscopy was used to determine the amount of Penicillin-G released from the carrier. Penicillin-G release profile from silica nanoparticles exhibited a delayed release effect.


Subject(s)
Drug Carriers/chemistry , Drug Carriers/chemical synthesis , Drug Delivery Systems , Nanoparticles/chemistry , Oryza/chemistry , Silicon Dioxide/chemistry , Particle Size , Penicillin G/analysis , Penicillin G/chemistry , Porosity , Surface Properties , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL