Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Plant Biol ; 23(1): 411, 2023 Sep 04.
Article in English | MEDLINE | ID: mdl-37667189

ABSTRACT

BACKGROUND: Cadmium (Cd) stress displays critical damage to the plant growth and health. Uptake and accumulation of Cd in plant tissues cause detrimental effects on crop productivity and ultimately impose threats to human beings. For this reason, a quite number of attempts have been made to buffer the adverse effects or to reduce the uptake of Cd. Of those strategies, the application of functionalized nanoparticles has lately attracted increasing attention. Former reports clearly noted that putrescine (Put) displayed promising effects on alleviating different stress conditions like Cd and similarly chitosan (CTS), as well as its nano form, demonstrated parallel properties in this regard besides acting as a carrier for many loads with different applications in the agriculture industry. Herein, we, for the first time, assayed the potential effects of nano-conjugate form of Put and CTS (CTS-Put NP) on grapevine (Vitis vinifera L.) cv. Sultana suffering from Cd stress. We hypothesized that their nano conjugate combination (CTS-Put NPs) could potentially enhance Put proficiency, above all at lower doses under stress conditions via CTS as a carrier for Put. In this regard, Put (50 mg L- 1), CTS (0.5%), Put 50 mg L- 1 + CTS 0.5%" and CTS-Put NPs (0.1 and 0.5%) were applied on grapevines under Cd-stress conditions (0 and 10 mg kg- 1). The interactive effects of CTS-Put NP were investigated through a series of physiological and biochemical assays. RESULTS: The findings of present study clearly revealed that CTS-Put NPs as optimal treatments alleviated adverse effects of Cd-stress condition by enhancing chlorophyll (chl) a, b, carotenoids, Fv/Fm, Y(II), proline, total phenolic compounds, anthocyanins, antioxidant enzymatic activities and decreasing Y (NO), leaf and root Cd content, EL, MDA and H2O2. CONCLUSIONS: In conclusion, CTS-Put NPs could be applied as a stress protection treatment on plants under diverse heavy metal toxicity conditions to promote plant health, potentially highlighting new avenues for sustainable crop production in the agricultural sector under the threat of climate change.


Subject(s)
Chitosan , Vitis , Humans , Cadmium/toxicity , Antioxidants , Chitosan/pharmacology , Putrescine/pharmacology , Anthocyanins , Hydrogen Peroxide , Chlorophyll A
2.
Plant Physiol Biochem ; 197: 107653, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36965321

ABSTRACT

Due to their sessile nature, plant cannot escape from stress factors in their growing environment, in either biotic or abiotic nature. Amid the abiotic stress factors; high levels of soil cadmium (Cd) impose heavy metal stress on plants, resulting in critical injuries and reduced agronomic performance. In order to buffer the adverse effects of Cd stress, novel nanoparticles (NP) have been applied and notable improvements have been reported. According to the literature, the protective roles of polyamines (e.g., Putrescine; Put) and carbon quantum dots (CQD) have been reported with respect to the plant productivity under either stress or non-stress conditions. Those reports led us to hypothesize that the conjugation of Put and CQD (Put-CQD NPs) might lead to further augmented performance of plants under stress and non-stress conditions. In this regard, we successfully synthesized a novel nanomaterial Put-CQD NPs. In this respect, Put (50 mg L-1), CQD (50 mg L-1) and Put-CQD NPs (25 and 50 mg L-1) were sprayed in 'Sultana' grapevines under Cd stress (10 mg kg-1). As expected, upon stress, Cd content in leaf and root tissues increased by 103.40% and 65.15%, respectively (p < 0.05). The high uptake and accumulation of Cd in plant tissues were manifested in significant alterations of physiological and biochemical attributes of the plant. Concerning stress markers, Cd stress caused increases in content of induced MDA, H2O2, and proline as well as electrolyte leakage rate. As expected, Cd stress caused critical reductions in fresh and dry leaf weight by 21.31% and 42.34%, respectively (p < 0.05). On the other hand, both Put-CQD NPs increased fresh and dry leaf weigh up to approximately 30%. The Cd-mediated disturbances in photosynthetic pigments and chlorophyll fluorescence were buffered with Put-CQD NPs. Of the defence system, enzymatic (SOD, APX, GP) as well as anthocyanin and phenolics were induced by both Cd stress and Put-CQD NPs (p < 0.05). On the other hand, Cd stress reduced content of polyamines (putrescine (Put), spermine (Spm) and spermidine (Spd) by 39.28%, 53.36%, and 39.26%, respectively (p < 0.05). However, the reduction levels were buffered by the treatments. Considering the effectiveness of both NP concentrations, the lower dose (25 mg L-1) could be considered as an optimal concentration. To our knowledge, this is the first report of its kind as a potential agent to reduce the adverse effects of Cd stress in grapevines.


Subject(s)
Quantum Dots , Vitis , Putrescine/pharmacology , Cadmium/toxicity , Cadmium/chemistry , Hydrogen Peroxide , Polyamines , Antioxidants/pharmacology
3.
Foods ; 11(21)2022 Nov 06.
Article in English | MEDLINE | ID: mdl-36360146

ABSTRACT

This study aimed for the application of active chitosan coating incorporating yarrow essential oil (YEO) together with the development of an on-package sensor label based on bromocresol purple (BCP) and methyl red (MR) for shelf-life extension and freshness monitoring of chicken breast fillet. Physiochemical and microbiological attributes of chicken meat coated with sole chitosan, YEO, and chitosan + YEO were compared with those of uncoated (control) samples. Chitosan + YEO coated chicken meat stayed fresh with no significant changes (p > 0.05) in pH (5.42−5.56), TVB-N (12.55−15.36 mg N/100 g), TBARs (0.35−0.40 mg MDA/kg) and total aerobic psycrotrophic bacteria (3.97−4.65 log CFU/g) in days 1−15. There was no response of the dual-sensors label toward the variation in chemical and microbiological indicators of chicken meat coated with chitosan + YEO. However, either uncoated, sole chitosan, or sole YEO treatments indicated a three-stage freshness status with the fresh stage belonged to a period earlier than day 7 (with no distinct color change in both sensor labels); the semi-fresh stage corresponded to storage days between 7−9, wherein a gradual color change appeared (MR from pink to orange, BCP from yellow to light purple); and the spoiled stage occurred in day 9 onward with a drastic color change (MR from orange to light yellow, BCP from light purple to deep purple). In general, the dual-sensors successfully responded to the variation of chemical and microbiological indicators and visual color of uncoated samples during storage time. Based on the obtained results, the application of chitosan + YEO coating efficiently prolonged the freshness of chicken breast meat, where on-package dual-sensors systems were able to detect the freshness stages of meat samples during storage time.

4.
Plant Physiol Biochem ; 185: 290-301, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-35728421

ABSTRACT

The growth, development, and morphology of plants are extremely affected by many internal and external factors. In this regard, plant nourishing solutions take the most impact. Nowadays, the magnetization of nutrient solutions has been recommended as a promising eco-friendly approach for improving the growth and development of plants. This study was designed to explore the potential of magnetic nutrient solutions in altering morphometric characteristics as well as some physiological and nutritional attributes of Rasha grapevines. Magnetic treatments included magnetized nutrient solution (MagS) and pre-magnetized water completed with nutrients (MagW + S) at magnetic field intensities (0.1 and 0.2 T). According to the results, the most considerable changes in leaf shape and size as well as fresh and dry weights were observed in the plants treated with MagS at 0.2 T. Also, MagS 0.2 had a significant effect on increasing photosynthetic pigments, content of total soluble carbohydrates and protein, and activity of antioxidant enzymes. The content of TNK, K, P, Fe, and Cu was considerably amplified by MagW + S 0.2. Overall, the magnetic solutions had favorable influences on physiological, nutritional state, and leaf morphology of grapevines possibly through alerting water and solution properties, mineral solubility, and phytohormones signalling.


Subject(s)
Vitis/growth & development , Vitis/metabolism , Copper/metabolism , Iron/metabolism , Magnetic Phenomena , Nutrients , Phosphorus/metabolism , Plant Leaves/anatomy & histology , Plant Leaves/growth & development , Plant Leaves/metabolism , Potassium/metabolism , Vitis/anatomy & histology , Water/metabolism
5.
J Environ Sci (China) ; 64: 130-138, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29478632

ABSTRACT

Plants are essential components of all ecosystems and play a critical role in environmental fate of nanoparticles. However, the toxicological impacts of nanoparticles on plants are not well documented. Titanium dioxide nanoparticles (TiO2-NPs) are produced worldwide in large quantities for a wide range of purposes. In the present study, the uptake of TiO2-NPs by the aquatic plant Spirodela polyrrhiza and the consequent effects on the plant were evaluated. Initially, structural and morphological characteristics of the used TiO2-NPs were determined using XRD, SEM, TEM and BET techniques. As a result, an anatase structure with the average crystalline size of 8nm was confirmed for the synthesized TiO2-NPs. Subsequently, entrance of TiO2-NPS to plant roots was verified by fluorescence microscopic images. Activity of a number of antioxidant enzymes, as well as, changes in growth parameters and photosynthetic pigment contents as physiological indices were assessed to investigate the effects of TiO2-NPs on S. polyrrhiza. The increasing concentration of TiO2-NPs led to the significant decrease in all of the growth parameters and changes in antioxidant enzyme activities. The activity of superoxide dismutase enhanced significantly by the increasing concentration of TiO2-NPs. Enhancement of superoxide dismutase activity could be explained as promoting antioxidant system to scavenging the reactive oxygen species. In contrast, the activity of peroxidase was notably decreased in the treated plants. Reduced peroxidase activity could be attributed to either direct effect of these particles on the molecular structure of the enzyme or plant defense system damage due to reactive oxygen species.


Subject(s)
Araceae/physiology , Nanoparticles/toxicity , Titanium/toxicity , Toxicity Tests , Water Pollutants, Chemical/toxicity , Antioxidants , Oxidation-Reduction , Oxidative Stress , Peroxidase , Superoxide Dismutase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...