Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 359: 142288, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38750729

ABSTRACT

Helicoverpa armigera, a ubiquitous polyphagous pest, poses a significant threat to global agriculture, causing substantial economic losses and demonstrating resistance to synthetic pesticides. This study investigates the potential of emamectin benzoate (EMB), an avermectin derivative, as an effective control agent against H. armigera. The larvae of the NBII-MP-NOC-01 strain of H. armigera were reared on an artificial diet. The impact of dietary EMB was examined on four midgut enzymes; alanine aminotransferase (ALT), aspartate aminotransferase (AST), acid phosphatase (ACP), and alkaline phosphatase (ALP). Results showed a dose-dependent and time-dependent reduction in ALT and AST activity, while an initial increase and subsequent decline in ACP and ALP activity at higher EMB concentrations. Computational modelling of enzyme structures and molecular docking studies revealed differential binding of EMB with the midgut enzymes. The strongest interaction was observed between EMB and ALT residues, contrasting with weakest interactions observed with AST. The study also showed that decreased activity of transaminases in H. armigera caused by EMB may be because of stability-activity trade-off, while in phosphatases reverse may be the case. This research provides crucial insights into the biochemical responses and the intricate insecticide-enzyme interactions in H. armigera caused by EMB exposure. This study lays the foundation for further research aimed at developing environmentally friendly approaches for managing H. armigera, addressing the challenges associated with conventional pesticides.


Subject(s)
Acid Phosphatase , Alanine Transaminase , Alkaline Phosphatase , Aspartate Aminotransferases , Insecticides , Ivermectin , Larva , Molecular Docking Simulation , Moths , Animals , Ivermectin/analogs & derivatives , Ivermectin/toxicity , Larva/drug effects , Moths/drug effects , Insecticides/toxicity , Insecticides/chemistry , Insecticides/metabolism , Alkaline Phosphatase/metabolism , Acid Phosphatase/metabolism , Alanine Transaminase/metabolism , Aspartate Aminotransferases/metabolism , Helicoverpa armigera
2.
Front Physiol ; 13: 1031285, 2022.
Article in English | MEDLINE | ID: mdl-36311240

ABSTRACT

Aedes aegypti is responsible for the global spread of several ailments such as chikungunya, dengue, yellow fever, and Zika. The use of synthetic chemicals is the primary intervention in mosquito management. However, their excessive utilization resulting in the spread of toxic ingredients in the environment and posing threats to beneficial organisms has prompted the recommendation for the use of biologically synthesized nanocomposites as a promising approach for vector control. Silver nanocomposites were synthesized using leaf (AL-AgNCs) and stem (AS-AgNCs) extracts of Achyranthes aspera. The early fourth instars of A. aegypti were exposed to lethal doses of these nanocomposites to evaluate their effects on larval development, behavior, morphology, and mid-gut histoarchitecture. The cellular damage and deposition of nanocomposite residues in the mid-gut were studied using light and transmission electron microscopy. The A. aspera silver nanocomposite (AA-AgNC)-exposed larvae exhibited dose-dependent extended duration of development and diminished adult emergence, but did not exhibit modified behavior. Intense damage to the cuticle membrane and slight contraction in the internal membrane of anal papillae were noticed. Morphologically, the mid-gut appeared disorganized, darkly pigmented, and shrunk. Histological investigations of the mid-gut revealed significantly disordered internal architecture with lysed cells, damaged peritrophic membrane and microvilli, disintegrated epithelial layer, and a ruptured and displaced basement membrane. Visualization of the larval mid-gut through TEM showed severe cellular damage and aggregation of black spots, indicating the deposition of silver particles released by AA-AgNCs. The investigations revealed the bio-efficacy of A. aspera-mediated AgNCs against A. aegypti inducing stomach and contact toxicity in the larvae. The utilization of AA-AgNCs is recommended for A. aegypti management as a safe and effective intervention.

SELECTION OF CITATIONS
SEARCH DETAIL
...