Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Ann Bot ; 116(5): 847, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26378059

ABSTRACT

Since the publication of this paper, it has become apparent that an error was made in the legend to Fig. 3 and the colours referring to occidental and oriental are the wrong way round. The authors apologise for this error, and a correct version of the legend to Fig. 3 is given below.

2.
Ann Bot ; 116(1): 101-12, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26113618

ABSTRACT

BACKGROUND AND AIMS: Date palms (Phoenix dactylifera, Arecaceae) are of great economic and ecological value to the oasis agriculture of arid and semi-arid areas. However, despite the availability of a large date palm germplasm spreading from the Atlantic shores to Southern Asia, improvement of the species is being hampered by a lack of information on global genetic diversity and population structure. In order to contribute to the varietal improvement of date palms and to provide new insights on the influence of geographic origins and human activity on the genetic structure of the date palm, this study analysed the diversity of the species. METHODS: Genetic diversity levels and population genetic structure were investigated through the genotyping of a collection of 295 date palm accessions ranging from Mauritania to Pakistan using a set of 18 simple sequence repeat (SSR) markers and a plastid minisatellite. KEY RESULTS: Using a Bayesian clustering approach, the date palm genotypes can be structured into two different gene pools: the first, termed the Eastern pool, consists of accessions from Asia and Djibouti, whilst the second, termed the Western pool, consists of accessions from Africa. These results confirm the existence of two ancient gene pools that have contributed to the current date palm diversity. The presence of admixed genotypes is also noted, which points at gene flows between eastern and western origins, mostly from east to west, following a human-mediated diffusion of the species. CONCLUSIONS: This study assesses the distribution and level of genetic diversity of accessible date palm resources, provides new insights on the geographic origins and genetic history of the cultivated component of this species, and confirms the existence of at least two domestication origins. Furthermore, the strong genetic structure clearly established here is a prerequisite for any breeding programme exploiting the effective polymorphism related to each gene pool.


Subject(s)
Genetic Variation , Geography , Phoeniceae/genetics , Bayes Theorem , Chloroplasts/genetics , Cluster Analysis , Discriminant Analysis , Linkage Disequilibrium/genetics , Microsatellite Repeats/genetics , Models, Genetic , Polymorphism, Genetic , Principal Component Analysis
3.
ScientificWorldJournal ; 2012: 837395, 2012.
Article in English | MEDLINE | ID: mdl-22629211

ABSTRACT

This study provides a physiological analysis of somatic embryogenesis in four elite cultivars of date palms: Ahmar, Amsekhsi, Tijib, and Amaside, from the initial callogenesis to establishment and proliferation of embryogenic suspension cultures. Somatic embryos development and in vitro plants rooting were also studied. For each step, auxins and cytokinins concentrations were optimised. The primary callogenesis from leaf explants of seedlings appeared highly dependent on genotype. Ahmar (80%) and Amsekhsi (76%) appeared highly callogenic, whereas Tijib (10%) and Amaside (2%) produced low amounts of calluses. 2,4-Dichlorophenoxyacetic acid appeared favorable to the induction of primary callogenesis and its effect was enhanced by the addition of benzyl adenine or adenine sulfate. Secondary friable calli obtained from chopped granular calli were used to initiate embryogenic cell suspensions in media supplied with 2,4-dichlorophenoxyacetic acid. Suspension cultures showed a growth rate of fourfold after four subcultures in presence of 2,4-dichlorophenoxyacetic acid 2 mg/L. Our results showed that a seven-day transitory treatment with benzyl adenine 0,5 mg/L was necessary to optimize embryos development. Naphthalene acetic acid induced the development of primary orthogravitropic roots during embryos germination. The comparison with cytofluorometry of nuclear DNA amounts showed no significant difference in ploidy level between regenerated plants and seedlings.


Subject(s)
Arecaceae/embryology , Arecaceae/growth & development , Plant Growth Regulators/pharmacology , Plant Somatic Embryogenesis Techniques/methods , Seeds/growth & development , Seeds/drug effects
4.
Ann Bot ; 106(2): 255-66, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20534596

ABSTRACT

BACKGROUND AND AIMS: Phoenix dactylifera (date palm) is a dioecious species displaying strong dimorphism between pistillate and staminate flowers. The mechanisms involved in the development of unisexual flowers are as yet unknown. METHODS: This paper describes the results of inflorescence and flower development studies using different histological and molecular cytological approaches. Nuclear integrity and cell division patterns in reproductive organs were investigated through DAPI staining and in situ hybridization using a histone H4 gene probe. KEY RESULTS: The earliest sex-related difference in flower buds is observed at an otherwise 'bisexual' stage, at which the number of cells in the gynoecium of pistillate flowers is higher than in their staminate counterparts. In the pistillate flower, staminodes (sterile stamens) display precocious arrest of development followed by cell differentiation. In the staminate flower, pistillodes (sterile gynoecium) undergo some degree of differentiation and their development ceases shortly after the ovule has been initiated. Staminode and pistillode cells exhibit nuclear integrity although they did not show any accumulation of histone H4 gene transcripts. CONCLUSIONS: These results strongly suggest that the developmental arrest of sterile sex organs and the subsequent unisexuality of date palm flowers result from a cessation of cell division and precocious cell differentiation rather than from cell death.


Subject(s)
Arecaceae/cytology , Arecaceae/growth & development , Cell Cycle/physiology , Flowers/cytology , Flowers/growth & development , Arecaceae/genetics , Cell Cycle/genetics , Flowers/genetics , In Situ Hybridization , Microscopy, Electron, Scanning , Models, Biological , Morphogenesis/genetics , Morphogenesis/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...