Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Pharm ; 612: 121288, 2022 Jan 25.
Article in English | MEDLINE | ID: mdl-34800616

ABSTRACT

Vestibulodynia (VBD), an idiopathic pain disorder characterized by erythema and pain of the vulvar vestibule (the inner aspect of the labia minora and vaginal opening), is the most common cause of sexual pain for women of reproductive age. Women also feel discomfort with contact with clothing and tampon use. As most women with this disorder only have pain with provocation of the tissue, topical anesthetics applied to the vestibule are the current first line treatment for temporary pain relief. Treatment options are limited due to anatomical constraints of the vestibular region, poor drug retention time, imprecise dosing, leakage, and overall product messiness. In this study we report a novel approach to treatment of VBD using thin film designed to fit the vulvar vestibule and deliver lidocaine locally. Two use cases for VBD treatment were identified 1) rapid drug release (<5 min), for use prior to intercourse and 2) long-acting release (≥120 min) for prolonged use and relief throughout the day. Cellulose-based mucoadhesive thin films were fabricated using a solvent casting method. Three polymers including hydroxyethylcellulose (HEC), hydroxypropylcellulose (HPC), and hydroxypropylmethycellulose (HMPC), were selected owing to their biocompatibility and ideal properties for film casting. Films casted with HEC, HPC, and HPMC exhibited mucoadhesive properties relative to a control, with the highest mucoadhesive force recorded for films casted with HPC. Effect of media volume, pH, presence of mucin and presence of drug on film dissolution rates were investigated. Dissolution rates were independent of media volume, media pH or drug presence, whereas faster dissolution rates were obtained for all films in presence of mucin. In vitro lidocaine release kinetics were influenced by polymer type, percent drug loading and film casting thickness. Lidocaine release was based on a diffusion mechanism rather than through film dissolution and faster release (∼5 min) was observed for HEC films compared HPC films (∼120 min). Higher drug loading and film thickness resulted in slower and more prolonged release kinetics of lidocaine. All films were biocompatible and exhibited good mechanical properties. Two film formulations (9% w/w HPC with 12% w/w LHC, 5% w/w HEC with 6% w/w LHC) were optimized to meet the two use case scenarios for VBD treatment and moved into in vivo testing. In vivo testing demonstrated the safety of the films in BALB/c mice, and the pharmacokinetic analysis demonstrated the delivery of lidocaine primarily to the vaginal tissue. We demonstrate the ability to develop a mucoadhesive, biodissolvable thin film and fine-tune drug release kinetics to optimize local delivery of lidocaine to the vulva.


Subject(s)
Lidocaine , Vulvodynia , Anesthetics, Local , Animals , Drug Compounding , Drug Liberation , Female , Mice
2.
Polymers (Basel) ; 13(4)2021 Feb 13.
Article in English | MEDLINE | ID: mdl-33668571

ABSTRACT

Eosinophilic esophagitis (EoE) is a chronic atopic disease that has become increasingly prevalent over the past 20 years. A first-line pharmacologic option is topical/swallowed corticosteroids, but these are adapted from asthma preparations such as fluticasone from an inhaler and yield suboptimal response rates. There are no FDA-approved medications for the treatment of EoE, and esophageal-specific drug formulations are lacking. We report the development of two novel esophageal-specific drug delivery platforms. The first is a fluticasone-eluting string that could be swallowed similar to the string test "entero-test" and used for overnight treatment, allowing for a rapid release along the entire length of esophagus. In vitro drug release studies showed a target release of 1 mg/day of fluticasone. In vivo pharmacokinetic studies were carried out after deploying the string in a porcine model, and our results showed a high local level of fluticasone in esophageal tissue persisting over 1 and 3 days, and a minimal systemic absorption in plasma. The second device is a fluticasone-eluting 3D printed ring for local and sustained release of fluticasone in the esophagus. We designed and fabricated biocompatible fluticasone-loaded rings using a top-down, Digital Light Processing (DLP) Gizmo 3D printer. We explored various strategies of drug loading into 3D printed rings, involving incorporation of drug during the print process (pre-loading) or after printing (post-loading). In vitro drug release studies of fluticasone-loaded rings (pre and post-loaded) showed that fluticasone elutes at a constant rate over a period of one month. Ex vivo pharmacokinetic studies in the porcine model also showed high tissue levels of fluticasone and both rings and strings were successfully deployed into the porcine esophagus in vivo. Given these preliminary proof-of-concept data, these devices now merit study in animal models of disease and ultimately subsequent translation to testing in humans.

3.
PLoS One ; 13(2): e0192530, 2018.
Article in English | MEDLINE | ID: mdl-29425225

ABSTRACT

INTRODUCTION: We have previously developed a portable Pocket Colposcope for cervical cancer screening in resource-limited settings. In this manuscript we report two different strategies (cross-polarization and an integrated reflector) to improve image contrast levels achieved with the Pocket Colposcope and evaluate the merits of each strategy compared to a standard-of-care digital colposcope. The desired outcomes included reduced specular reflection (glare), increased illumination beam pattern uniformity, and reduced electrical power budget. In addition, anti-fogging and waterproofing features were incorporated to prevent the Pocket Colposcope from fogging in the vaginal canal and to enable rapid disinfection by submersion in chemical agents. METHODS: Cross-polarization (Generation 3 Pocket Colposcope) and a new reflector design (Generation 4 Pocket Colposcope) were used to reduce glare and improve contrast. The reflector design (including the angle and height of the reflector sidewalls) was optimized through ray-tracing simulations. Both systems were characterized with a series of bench tests to assess specular reflection, beam pattern uniformity, and image contrast. A pilot clinical study was conducted to compare the Generation 3 and 4 Pocket Colposcopes to a standard-of-care colposcope (Leisegang Optik 2). Specifically, paired images of cervices were collected from the standard-of-care colposcope and either the Generation 3 (n = 24 patients) or the Generation 4 (n = 32 patients) Pocket Colposcopes. The paired images were blinded by device, randomized, and sent to an expert physician who provided a diagnosis for each image. Corresponding pathology was obtained for all image pairs. The primary outcome measures were the level of agreement (%) and κ (kappa) statistic between the standard-of-care colposcope and each Pocket Colposcope (Generation 3 and Generation 4). RESULTS: Both generations of Pocket Colposcope had significantly higher image contrast when compared to the standard-of-care colposcope. The addition of anti-fog and waterproofing features to the Generation 3 and 4 Pocket Colposcope did not impact image quality based on qualitative and quantitative metrics. The level of agreement between the Generation 3 Pocket Colposcope and the standard-of-care colposcope was 75.0% (kappa = 0.4000, p = 0.0028, n = 24). This closely matched the level of agreement between the Generation 4 Pocket Colposcope and the standard-of-care colposcope which was also 75.0% (kappa = 0.4941, p = 0.0024, n = 32). CONCLUSION: Our results indicate that the Generation 3 and 4 Pocket Colposcopes perform comparably to the standard-of-care colposcope, with the added benefit of being low-cost and waterproof, which is ideal for use in resource-limited settings. Additionally, the reflector significantly reduces the electrical requirements of the Generation 4 Pocket Colposcope enhancing portability without altering performance compared to the Generation 3 system.


Subject(s)
Colposcopy/instrumentation , Uterine Cervical Neoplasms/diagnosis , Female , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...