Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 66
Filter
Add more filters










Publication year range
1.
J Acoust Soc Am ; 156(1): 600-609, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-39029097

ABSTRACT

The prevalence of random scattering from a rough ocean surface increases with increasing χ=kh cos θ, where k is the acoustic wavenumber, h is the root-mean-square surface height, and θ is the incidence angle. Generally, when χ≫1, coherence between incident and surface-scattered fields is lost. However, such coherence may be recovered when χ≫1 by considering the frequency-difference autoproduct of the surface-scattered field, a quadratic product of complex fields at nearby frequencies. Herein, the autoproduct's coherent reflection coefficient for χ> 20 is determined from surface-scattered sound fields obtained from 50 independent realizations of the rough ocean surface measured in pelagic waters off the coast of California in January 1992. The recordings were made with a source at a depth of 147 m that broadcasted 30 and 40 kHz signals to a single receiver 576 m away at depth of 66 m. An analytic formula for the coherent reflection coefficient of the frequency-difference autoproduct, based on the Kirchhoff approximation and a Gaussian surface autocorrelation function, compares favorably with measurements. Improved agreement with the single-receiver measurements is possible via a minor adjustment to the surface autocorrelation length. The adjustment identified here matches that determined previously from horizontal spatial coherence estimates utilizing the experiment's eight-element receiving array.

2.
J Acoust Soc Am ; 155(5): 3291-3301, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38747716

ABSTRACT

The dynamic (acoustic pressure) and kinematic (acoustic acceleration and velocity) properties of time-limited signals are studied in terms of acoustic dose metrics as might be used to assess the impact of underwater noise on marine life. The work is relevant for the study of anthropogenic transient acoustic signals, such as airguns, pile driving, and underwater explosive sources, as well as more generic transient signals from sonar systems. Dose metrics are first derived from numerical simulations of sound propagation from a seismic airgun source as specified in a Joint Industry Programme benchmark problem. Similar analyses are carried out based on at-sea acoustic measurements on the continental shelf, made with a vector sensor positioned 1.45 m off the seabed. These measurements are on transient time-limited signals from multiple underwater explosive sources at differing ranges, and from a towed, sonar source. The study demonstrates, both numerically and experimentally, that under many realistic scenarios, kinematic based acoustic dosage metrics within the water column can be evaluated using acoustic pressure measurements.

3.
J Acoust Soc Am ; 155(3): 1868-1880, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38451136

ABSTRACT

The coherence of rough sea-surface-scattered acoustic fields decreases with increasing frequency. The frequency-difference autoproduct, a quadratic product of acoustic fields at nearby frequencies, mimics a genuine field at the difference frequency. In rough-surface scattering, the autoproduct's lower effective frequency decreases the apparent surface roughness, restoring coherent reflection. Herein, the recovery of coherent reflection in sea surface scattering via the frequency-difference autoproduct is examined for data collected off the coast of New Jersey during the Shallow Water '06 (SW06) experiment. An acoustic source at depth 40 m and receiver at depth 24.3 m and range 200 m interrogated 160 independent realizations of the ocean surface. The root mean square surface height h was 0.167 m, and broadcast frequencies were 14-20 kHz, so that 2.5 ≤kh cos θ≤ 3.7 for acoustic wavenumber k and incidence angle θ. Measured autoproducts, constructed from scattered constituent fields, show significant coherent reflection at sufficiently low difference frequencies. Theoretical results, using the Kirchhoff approximation and a non-analytic surface autocorrelation function, agree with experimental findings. The match is improved using a numerical strategy, exploiting the relationship between autoproduct-based coherence recovery, the ocean-surface autocorrelation function, and the ocean-surface height spectrum. Error bars computed from Monte Carlo scattering simulations support the validity of the measured coherence recovery.

4.
mBio ; 15(2): e0330423, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38206049

ABSTRACT

Biofilms are matrix-encased microbial communities that increase the environmental fitness and infectivity of many human pathogens including Vibrio cholerae. Biofilm matrix assembly is essential for biofilm formation and function. Known components of the V. cholerae biofilm matrix are the polysaccharide Vibrio polysaccharide (VPS), matrix proteins RbmA, RbmC, Bap1, and extracellular DNA, but the majority of the protein composition is uncharacterized. This study comprehensively analyzed the biofilm matrix proteome and revealed the presence of outer membrane proteins (OMPs). Outer membrane vesicles (OMVs) were also present in the V. cholerae biofilm matrix and were associated with OMPs and many biofilm matrix proteins suggesting that they participate in biofilm matrix assembly. Consistent with this, OMVs had the capability to alter biofilm structural properties depending on their composition. OmpU was the most prevalent OMP in the matrix, and its absence altered biofilm architecture by increasing VPS production. Single-cell force spectroscopy revealed that proteins critical for biofilm formation, OmpU, the matrix proteins RbmA, RbmC, Bap1, and VPS contribute to cell-surface adhesion forces at differing efficiency, with VPS showing the highest efficiency whereas Bap1 showing the lowest efficiency. Our findings provide new insights into the molecular mechanisms underlying biofilm matrix assembly in V. cholerae, which may provide new opportunities to develop inhibitors that specifically alter biofilm matrix properties and, thus, affect either the environmental survival or pathogenesis of V. cholerae.IMPORTANCECholera remains a major public health concern. Vibrio cholerae, the causative agent of cholera, forms biofilms, which are critical for its transmission, infectivity, and environmental persistence. While we know that the V. cholerae biofilm matrix contains exopolysaccharide, matrix proteins, and extracellular DNA, we do not have a comprehensive understanding of the majority of biofilm matrix components. Here, we discover outer membrane vesicles (OMVs) within the biofilm matrix of V. cholerae. Proteomic analysis of the matrix and matrix-associated OMVs showed that OMVs carry key matrix proteins and Vibrio polysaccharide (VPS) to help build biofilms. We also characterize the role of the highly abundant outer membrane protein OmpU in biofilm formation and show that it impacts biofilm architecture in a VPS-dependent manner. Understanding V. cholerae biofilm formation is important for developing a better prevention and treatment strategy framework.


Subject(s)
Vibrio cholerae , Humans , Vibrio cholerae/metabolism , Membrane Proteins/metabolism , Extracellular Polymeric Substance Matrix/metabolism , Proteomics , Bacterial Proteins/metabolism , Biofilms , Polysaccharides/metabolism , DNA/metabolism
5.
Sci Adv ; 9(49): eadh4179, 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38064560

ABSTRACT

Cytochrome c oxidase (CcO) is part of the respiratory chain and contributes to the electrochemical membrane gradient in mitochondria as well as in many bacteria, as it uses the energy released in the reduction of oxygen to pump protons across an energy-transducing biological membrane. Here, we use time-resolved serial femtosecond crystallography to study the structural response of the active site upon flash photolysis of carbon monoxide (CO) from the reduced heme a3 of ba3-type CcO. In contrast with the aa3-type enzyme, our data show how CO is stabilized on CuB through interactions with a transiently ordered water molecule. These results offer a structural explanation for the extended lifetime of the CuB-CO complex in ba3-type CcO and, by extension, the extremely high oxygen affinity of the enzyme.


Subject(s)
Carbon Monoxide , Electron Transport Complex IV , Electron Transport Complex IV/metabolism , Catalytic Domain , Carbon Monoxide/chemistry , Crystallography , Oxidation-Reduction , Oxygen/metabolism
6.
J Acoust Soc Am ; 154(3): 1482-1492, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37695294

ABSTRACT

Vector acoustic properties of a narrowband acoustic field are observed as a function of range from a source towed in waters of depth 77 m on the New England Mud Patch. At the source frequency (43 Hz), the waveguide supported three trapped modes, with mode 2 weakly excited owing to the towed source depth. The receiving sensor was positioned 1.45 m above the seafloor with a sampling range aperture of 2500 m. The vector acoustics observations enabled study of vortex regions that encompass two singular points for active acoustic intensity: the vortex point, which is co-located with a dislocation, and stagnation point. Interpretative modeling, based on the normal modes and using a geoacoustic model consistent with those emerging from studies conducted at this location, is in agreement with these measurements. Model-data comparisons were based on the first-order variables of acoustic pressure and velocity along with inverse Hankel transforms, which yield normalized horizontal wavenumber spectra, and second-order variables in the form of horizontal and vertical intensity as well as non-dimensional intensity-based ratios. These measures provide a degree of observational confirmation of some vortex region properties. Both observations and modeling point to a gradual deepening of such regions with increasing range owing to sediment attenuation.

7.
J Appl Crystallogr ; 56(Pt 2): 449-460, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-37032973

ABSTRACT

Serial femtosecond crystallography was initially developed for room-temperature X-ray diffraction studies of macromolecules at X-ray free electron lasers. When combined with tools that initiate biological reactions within microcrystals, time-resolved serial crystallography allows the study of structural changes that occur during an enzyme catalytic reaction. Serial synchrotron X-ray crystallography (SSX), which extends serial crystallography methods to synchrotron radiation sources, is expanding the scientific community using serial diffraction methods. This report presents a simple flow cell that can be used to deliver microcrystals across an X-ray beam during SSX studies. This device consists of an X-ray transparent glass capillary mounted on a goniometer-compatible 3D-printed support and is connected to a syringe pump via light-weight tubing. This flow cell is easily mounted and aligned, and it is disposable so can be rapidly replaced when blocked. This system was demonstrated by collecting SSX data at MAX IV Laboratory from microcrystals of the integral membrane protein cytochrome c oxidase from Thermus thermophilus, from which an X-ray structure was determined to 2.12 Šresolution. This simple SSX platform may help to lower entry barriers for non-expert users of SSX.

9.
J Acoust Soc Am ; 152(6): 3648, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36586834

ABSTRACT

Observed near the seafloor, broadband noise emissions from a vessel passing directly above exhibit frequency bands where potential acoustic energy is greater than kinetic energy while the opposite occurs in neighboring frequency bands. The condition where the dynamic and kinematic energy forms differ in this manner is characteristic to interference involving steep angles or near-normal incidence reflection from the seafloor. Measurements are made at two experimental sites using a research vessel passing above a vector sensor, positioned ∼1.5 m above the seabed, resulting in a vessel horizontal range approaching ∼0. The data are expressed as a ratio of kinetic to potential energy in decibels and yield information on seabed properties. A model for kinetic and potential energy is developed from the method of images using a layered seabed and is used to invert data collected in Puget Sound. A higher-impedance seabed is identified via inversion, which is consistent with the thin Holocene sediments in the region. For data collected on the New England Mud Patch, the model is instead applied directly to nominal seabed parameters originating from prior studies that identify a low-speed mud layer atop a higher-speed transition layer separating the mud substrate from a sediment basement.

10.
Sci Rep ; 12(1): 22474, 2022 12 28.
Article in English | MEDLINE | ID: mdl-36577792

ABSTRACT

Fibroblasts are a major cell population that perform critical functions in the wound healing process. In response to injury, they proliferate and migrate into the wound space, engaging in extracellular matrix (ECM) production, remodeling, and contraction. However, there is limited knowledge of how fibroblast functions are altered in diabetes. To address this gap, several state-of-the-art microscopy techniques were employed to investigate morphology, migration, ECM production, 2D traction, 3D contraction, and cell stiffness. Analysis of cell-derived matrix (CDM) revealed that diabetic fibroblasts produce thickened and less porous ECM that hindered migration of normal fibroblasts. In addition, diabetic fibroblasts were found to lose spindle-like shape, migrate slower, generate less traction force, exert limited 3D contractility, and have increased cell stiffness. These changes were due, in part, to a decreased level of active Rac1 and a lack of co-localization between F-actin and Waskott-Aldrich syndrome protein family verprolin homologous protein 2 (WAVE2). Interestingly, deletion of thrombospondin-2 (TSP2) in diabetic fibroblasts rescued these phenotypes and restored normal levels of active Rac1 and WAVE2-F-actin co-localization. These results provide a comprehensive view of the extent of diabetic fibroblast dysfunction, highlighting the regulatory role of the TSP2-Rac1-WAVE2-actin axis, and describing a new function of TSP2 in regulating cytoskeleton organization.


Subject(s)
Actins , Diabetes Mellitus , Humans , Actins/metabolism , Thrombospondins/metabolism , Cytoskeleton/metabolism , Wound Healing , Fibroblasts/metabolism , Diabetes Mellitus/metabolism , Wiskott-Aldrich Syndrome Protein Family/metabolism , Cell Movement/physiology , rac1 GTP-Binding Protein/metabolism
11.
J Acoust Soc Am ; 152(2): 733, 2022 08.
Article in English | MEDLINE | ID: mdl-36050166

ABSTRACT

Studies of the effects of sounds from underwater explosions on fishes have not included examination of potential effects on the ear. Caged Pacific mackerel (Scomber japonicus) located at seven distances (between approximately 35 and 800 m) from a single detonation of 4.5 kg of C4 explosives were exposed. After fish were recovered from the cages, the sensory epithelia of the saccular region of the inner ears were prepared and then examined microscopically. The number of hair cell (HC) ciliary bundles was counted at ten preselected 2500 µm2 regions. HCs were significantly reduced in fish exposed to the explosion as compared to the controls. The extent of these differences varied by saccular region, with damage greater in the rostral and caudal ends and minimal in the central region. The extent of effect also varied in animals at different distances from the explosion, with damage occurring in fish as far away as 400 m. While extrapolation to other species and other conditions (e.g., depth, explosive size, and distance) must be performed with extreme caution, the effects of explosive sounds should be considered when environmental impacts are estimated for marine projects.


Subject(s)
Ear, Inner , Perciformes , Animals , Explosions , Fishes , Sound
12.
J Acoust Soc Am ; 151(6): 3947, 2022 06.
Article in English | MEDLINE | ID: mdl-35778189

ABSTRACT

Underwater explosions from activities such as construction, demolition, and military activities can damage non-auditory tissues in fishes. To better understand these effects, Pacific mackerel (Scomber japonicus) were placed in mid-depth cages with water depth of approximately 19.5 m and exposed at distances of 21 to 807 m to a single mid-depth detonation of C4 explosive (6.2 kg net explosive weight). Following exposure, potential correlations between blast acoustics and observed physical effects were examined. Primary effects were damage to the swim bladder and kidney that exceeded control levels at ≤333 m from the explosion [peak sound pressure level 226 dB re 1 µPa, sound exposure level (SEL) 196 dB re 1 µPa2 s, pressure impulse 98 Pa s]. A proportion of fish were dead upon retrieval at 26-40 min post exposure in 6 of 12 cages located ≤157 m from the explosion. All fish that died within this period suffered severe injuries, especially swim bladder and kidney rupture. Logistic regression models demonstrated that fish size or mass was not important in determining susceptibility to injury and that peak pressure and SEL were better predictors of injury than was pressure impulse.


Subject(s)
Explosions , Perciformes , Air Sacs , Animals , Fishes , Sound
13.
J Acoust Soc Am ; 151(6): 3818, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35778219

ABSTRACT

Vector acoustic field properties measured during the 2017 Seabed Characterization Experiment (SBCEX17) are presented. The measurements were made using the Intensity Vector Autonomous Recorder (IVAR) that records acoustic pressure and acceleration from which acoustic velocity is obtained. Potential and kinetic energies of underwater noise from two ship sources, computed in decidecimal bands centered between 25-630 Hz, are equal within calibration uncertainty of ±1.5 dB, representing a practical result towards the inference of kinematic properties from pressure-only measurements. Bivariate signals limited to two acoustic velocity components are placed in the context of the Stokes framework to describe polarization properties, such as the degree of polarization, which represents a statistical measure of the dispersion of the polarization properties. A bivariate signal composed of vertical and radial velocity components within a narrow frequency band centered at 63 Hz representing different measures of circularity and degree of polarization is examined in detail, which clearly demonstrates properties of bivariate signal trajectory. An examination of the bivariate signal composed of the two horizontal components of velocity within decidecimal bands centered at 63 Hz and 250 Hz demonstrates the importance of the degree of polarization in bearing estimation of moving sources.

14.
Acta Crystallogr D Struct Biol ; 78(Pt 6): 698-708, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35647917

ABSTRACT

Serial crystallography is a rapidly growing method that can yield structural insights from microcrystals that were previously considered to be too small to be useful in conventional X-ray crystallography. Here, conditions for growing microcrystals of the photosynthetic reaction centre of Blastochloris viridis within a lipidic cubic phase (LCP) crystallization matrix that employ a seeding protocol utilizing detergent-grown crystals with a different crystal packing are described. LCP microcrystals diffracted to 2.25 Šresolution when exposed to XFEL radiation, which is an improvement of 0.15 Šover previous microcrystal forms. Ubiquinone was incorporated into the LCP crystallization media and the resulting electron density within the mobile QB pocket is comparable to that of other cofactors within the structure. As such, LCP microcrystallization conditions will facilitate time-resolved diffraction studies of electron-transfer reactions to the mobile quinone, potentially allowing the observation of structural changes associated with the two electron-transfer reactions leading to complete reduction of the ubiquinone ligand.


Subject(s)
Photosynthetic Reaction Center Complex Proteins , Crystallization , Crystallography, X-Ray , Lipids/chemistry , Membrane Proteins/chemistry , Photosynthetic Reaction Center Complex Proteins/chemistry , Ubiquinone
15.
Sci Adv ; 8(19): eabm7193, 2022 May 13.
Article in English | MEDLINE | ID: mdl-35544567

ABSTRACT

Although proteins are considered as nonconductors that transfer electrons only up to 1 to 2 nanometers via tunneling, Geobacter sulfurreducens transports respiratory electrons over micrometers, to insoluble acceptors or syntrophic partner cells, via nanowires composed of polymerized cytochrome OmcS. However, the mechanism enabling this long-range conduction is unclear. Here, we demonstrate that individual nanowires exhibit theoretically predicted hopping conductance, at rate (>1010 s-1) comparable to synthetic molecular wires, with negligible carrier loss over micrometers. Unexpectedly, nanowires show a 300-fold increase in their intrinsic conductance upon cooling, which vanishes upon deuteration. Computations show that cooling causes a massive rearrangement of hydrogen bonding networks in nanowires. Cooling makes hemes more planar, as revealed by Raman spectroscopy and simulations, and lowers their reduction potential. We find that the protein surrounding the hemes acts as a temperature-sensitive switch that controls charge transport by sensing environmental perturbations. Rational engineering of heme environments could enable systematic tuning of extracellular respiration.

16.
Nat Neurosci ; 25(4): 458-473, 2022 04.
Article in English | MEDLINE | ID: mdl-35379995

ABSTRACT

Hydrocephalus, characterized by cerebral ventricular dilatation, is routinely attributed to primary defects in cerebrospinal fluid (CSF) homeostasis. This fosters CSF shunting as the leading reason for brain surgery in children despite considerable disease heterogeneity. In this study, by integrating human brain transcriptomics with whole-exome sequencing of 483 patients with congenital hydrocephalus (CH), we found convergence of CH risk genes in embryonic neuroepithelial stem cells. Of all CH risk genes, TRIM71/lin-41 harbors the most de novo mutations and is most specifically expressed in neuroepithelial cells. Mice harboring neuroepithelial cell-specific Trim71 deletion or CH-specific Trim71 mutation exhibit prenatal hydrocephalus. CH mutations disrupt TRIM71 binding to its RNA targets, causing premature neuroepithelial cell differentiation and reduced neurogenesis. Cortical hypoplasia leads to a hypercompliant cortex and secondary ventricular enlargement without primary defects in CSF circulation. These data highlight the importance of precisely regulated neuroepithelial cell fate for normal brain-CSF biomechanics and support a clinically relevant neuroprogenitor-based paradigm of CH.


Subject(s)
Hydrocephalus , Animals , Biomechanical Phenomena , Brain/metabolism , Cerebrospinal Fluid/metabolism , Humans , Hydrocephalus/cerebrospinal fluid , Hydrocephalus/genetics , Mice , Neurogenesis/genetics , Tripartite Motif Proteins/genetics , Tripartite Motif Proteins/metabolism , Ubiquitin-Protein Ligases/genetics , Exome Sequencing
17.
Nat Commun ; 13(1): 829, 2022 02 11.
Article in English | MEDLINE | ID: mdl-35149672

ABSTRACT

Advances in synthetic biology permit the genetic encoding of synthetic chemistries at monomeric precision, enabling the synthesis of programmable proteins with tunable properties. Bacterial pili serve as an attractive biomaterial for the development of engineered protein materials due to their ability to self-assemble into mechanically robust filaments. However, most biomaterials lack electronic functionality and atomic structures of putative conductive proteins are not known. Here, we engineer high electronic conductivity in pili produced by a genomically-recoded E. coli strain. Incorporation of tryptophan into pili increased conductivity of individual filaments >80-fold. Computationally-guided ordering of the pili into nanostructures increased conductivity 5-fold compared to unordered pili networks. Site-specific conjugation of pili with gold nanoparticles, facilitated by incorporating the nonstandard amino acid propargyloxy-phenylalanine, increased filament conductivity ~170-fold. This work demonstrates the sequence-defined production of highly-conductive protein nanowires and hybrid organic-inorganic biomaterials with genetically-programmable electronic functionalities not accessible in nature or through chemical-based synthesis.


Subject(s)
Electric Conductivity , Metal Nanoparticles/chemistry , Nanowires , Proteins/metabolism , Chemical Phenomena , Escherichia coli/genetics , Fimbriae Proteins , Fimbriae, Bacterial/metabolism , Gold/chemistry , Nanostructures , Nanowires/chemistry , Phenylalanine/metabolism , Protein Engineering , Tryptophan/metabolism
18.
J Acoust Soc Am ; 150(3): 1897, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34598623

ABSTRACT

In ocean acoustics, shallow water propagation is conveniently described using normal mode propagation. This article proposes a framework to describe the polarization of normal modes, as measured using a particle velocity sensor in the water column. To do so, the article introduces the Stokes parameters, a set of four real-valued quantities widely used to describe polarization properties in wave physics, notably for light. Stokes parameters of acoustic normal modes are theoretically derived, and a signal processing framework to estimate them is introduced. The concept of the polarization spectrogram, which enables the visualization of the Stokes parameters using data from a single vector sensor, is also introduced. The whole framework is illustrated on simulated data as well as on experimental data collected during the 2017 Seabed Characterization Experiment. By introducing the Stokes framework used in many other fields, the article opens the door to a large set of methods developed and used in other contexts but largely ignored in ocean acoustics.

19.
J Acoust Soc Am ; 149(6): 4073, 2021 06.
Article in English | MEDLINE | ID: mdl-34241436

ABSTRACT

Approximately six years of underwater noise data recorded from the Regional Cabled Array network are examined to study long-term trends. The data originate from station HYS14 located 87 km offshore of Newport, OR. The results indicate that the third-octave band level centered at 63 Hz and attributable to shipping activity is reduced in the spring of 2020 by about 1.6 dB relative to the mean of the prior five years, owing to the reduced economic activity initiated by the COVID-19 pandemic. The results are subtle, as the noise reduction is less than the typical seasonal fluctuation associated with warming ocean surface temperatures in the summer that reduces mode excitation support at typical ship source depths, causing a repeated annual level change on the order of 4 dB at shipping frequencies. Seasonality of the noise contribution near 20 Hz from fin whales is also discussed. Corroboration of a COVID-19 effect on shipping noise is offered by an analysis of automatic identification system shipping data and shipping container activity for Puget Sound, over the same six-year period, which shows a reduction in the second quarter of 2020 by ∼19% and ∼17%, respectively, relative to the mean of the prior five years.


Subject(s)
Acoustics , COVID-19 , Humans , Oregon , Pandemics , SARS-CoV-2 , Ships
20.
Proc Natl Acad Sci U S A ; 118(2)2021 01 12.
Article in English | MEDLINE | ID: mdl-33372136

ABSTRACT

Proteins are commonly known to transfer electrons over distances limited to a few nanometers. However, many biological processes require electron transport over far longer distances. For example, soil and sediment bacteria transport electrons, over hundreds of micrometers to even centimeters, via putative filamentous proteins rich in aromatic residues. However, measurements of true protein conductivity have been hampered by artifacts due to large contact resistances between proteins and electrodes. Using individual amyloid protein crystals with atomic-resolution structures as a model system, we perform contact-free measurements of intrinsic electronic conductivity using a four-electrode approach. We find hole transport through micrometer-long stacked tyrosines at physiologically relevant potentials. Notably, the transport rate through tyrosines (105 s-1) is comparable to cytochromes. Our studies therefore show that amyloid proteins can efficiently transport charges, under ordinary thermal conditions, without any need for redox-active metal cofactors, large driving force, or photosensitizers to generate a high oxidation state for charge injection. By measuring conductivity as a function of molecular length, voltage, and temperature, while eliminating the dominant contribution of contact resistances, we show that a multistep hopping mechanism (composed of multiple tunneling steps), not single-step tunneling, explains the measured conductivity. Combined experimental and computational studies reveal that proton-coupled electron transfer confers conductivity; both the energetics of the proton acceptor, a neighboring glutamine, and its proximity to tyrosine influence the hole transport rate through a proton rocking mechanism. Surprisingly, conductivity increases 200-fold upon cooling due to higher availability of the proton acceptor by increased hydrogen bonding.


Subject(s)
Amyloidogenic Proteins/chemistry , Amyloidogenic Proteins/physiology , Proteins/physiology , Cytochromes/chemistry , Cytochromes/physiology , Electric Conductivity , Electron Transport/physiology , Electrons , Hydrogen Bonding , Models, Biological , Molecular Dynamics Simulation , Oxidation-Reduction , Proteins/chemistry , Protons , Tyrosine/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL