Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Oncogene ; 38(16): 2937-2952, 2019 04.
Article in English | MEDLINE | ID: mdl-30568224

ABSTRACT

Alternative splicing is dysregulated in cancer cells, driving the production of isoforms that allow tumor cells to survive and continuously proliferate. Part of the reactivation of telomerase involves the splicing of hTERT transcripts to produce full-length (FL) TERT. Very few splicing factors to date have been described to interact with hTERT and promote the production of FL TERT. We recently described one such splicing factor, NOVA1, that acts as an enhancer of FL hTERT splicing, increases telomerase activity, and promotes telomere maintenance in cancer cells. NOVA1 is expressed primarily in neurons and is involved in neurogenesis. In the present studies, we describe that polypyrimidine-tract binding proteins (PTBPs), which are also typically involved in neurogenesis, are also participating in the splicing of hTERT to FL in cancer. Knockdown experiments of PTBP1 in cancer cells indicate that PTBP1 reduces hTERT FL splicing and telomerase activity. Stable knockdown of PTBP1 results in progressively shortened telomere length in H1299 and H920 lung cancer cells. RNA pulldown experiments reveal that PTBP1 interacts with hTERT pre-mRNA in a NOVA1 dependent fashion. Knockdown of PTBP1 increases the expression of PTBP2 which also interacts with NOVA1, potentially preventing the association of NOVA1 with hTERT pre-mRNA. These new data highlight that splicing in cancer cells is regulated by competition for splice sites and that combinations of splicing factors interact at cis regulatory sites on pre-mRNA transcripts. By employing hTERT as a model gene, we show the coordination of the splicing factors NOVA1 and PTBP1 in cancer by regulating telomerase that is expressed in the vast majority of cancer cell types.


Subject(s)
Heterogeneous-Nuclear Ribonucleoproteins/genetics , Neoplasms/genetics , Polypyrimidine Tract-Binding Protein/genetics , RNA Precursors/genetics , RNA, Messenger/genetics , RNA-Binding Proteins/genetics , Telomerase/genetics , A549 Cells , Alternative Splicing/genetics , Cell Line , Cell Line, Tumor , HCT116 Cells , HEK293 Cells , HeLa Cells , Humans , Neuro-Oncological Ventral Antigen , RNA Splicing/genetics
2.
Nat Commun ; 9(1): 3112, 2018 08 06.
Article in English | MEDLINE | ID: mdl-30082712

ABSTRACT

Alternative splicing is dysregulated in cancer and the reactivation of telomerase involves the splicing of TERT transcripts to produce full-length (FL) TERT. Knowledge about the splicing factors that enhance or silence FL hTERT is lacking. We identified splicing factors that reduced telomerase activity and shortened telomeres using a siRNA minigene reporter screen and a lung cancer cell bioinformatics approach. A lead candidate, NOVA1, when knocked down resulted in a shift in hTERT splicing to non-catalytic isoforms, reduced telomerase activity, and progressive telomere shortening. NOVA1 knockdown also significantly altered cancer cell growth in vitro and in xenografts. Genome engineering experiments reveal that NOVA1 promotes the inclusion of exons in the reverse transcriptase domain of hTERT resulting in the production of FL hTERT transcripts. Utilizing hTERT splicing as a model splicing event in cancer may provide new insights into potentially targetable dysregulated splicing factors in cancer.


Subject(s)
Alternative Splicing , Carcinoma, Non-Small-Cell Lung/genetics , Lung Neoplasms/genetics , RNA-Binding Proteins/genetics , Telomerase/genetics , Animals , Carcinoma, Non-Small-Cell Lung/metabolism , Cell Line, Tumor , Computational Biology , Gene Deletion , Gene Silencing , Genetic Engineering , Genome, Human , HeLa Cells , Humans , Lung Neoplasms/metabolism , Mice , Mutation , Neoplasm Transplantation , Neuro-Oncological Ventral Antigen , Phenotype , Protein Binding , RNA, Small Interfering/metabolism , RNA-Binding Proteins/metabolism , Telomerase/metabolism , Telomere/ultrastructure
3.
J Biol Chem ; 292(11): 4395-4410, 2017 03 17.
Article in English | MEDLINE | ID: mdl-28031458

ABSTRACT

Niemann-Pick type C (NP-C) disease is a fatal genetic lipidosis for which there is no Food and Drug Administration (FDA)-approved therapy. Vorinostat, an FDA-approved inhibitor of histone deacetylases, ameliorates lysosomal lipid accumulation in cultured NP-C patient fibroblasts. To assess the therapeutic potential of histone deacetylase inhibition, we pursued these in vitro observations in two murine models of NP-C disease. Npc1nmf164 mice, which express a missense mutation in the Npc1 gene, were treated intraperitoneally, from weaning, with the maximum tolerated dose of vorinostat (150 mg/kg, 5 days/week). Disease progression was measured via gene expression, liver function and pathology, serum and tissue lipid levels, body weight, and life span. Transcriptome analyses of treated livers indicated multiple changes consistent with reversal of liver dysfunction that typifies NP-C disease. Significant improvements in liver pathology and function were achieved by this treatment regimen; however, NPC1 protein maturation and levels, disease progression, weight loss, and animal morbidity were not detectably altered. Vorinostat concentrations were >200 µm in the plasma compartment of treated animals but were almost 100-fold lower in brain tissue. Apolipoprotein B metabolism and the expression of key components of lipid homeostasis in primary hepatocytes from null (Npc1-/-) and missense (Npc1nmf164 ) mutant mice were altered by vorinostat treatment, consistent with a response by these cells independent of the status of the Npc1 locus. These results suggest that HDAC inhibitors have utility to treat visceral NP-C disease. However, it is clear that improved blood-brain barrier penetration will be required to alleviate the neurological symptoms of human NP-C disease.


Subject(s)
Histone Deacetylase Inhibitors/therapeutic use , Hydroxamic Acids/therapeutic use , Liver/drug effects , Liver/physiopathology , Niemann-Pick Disease, Type C/drug therapy , Niemann-Pick Disease, Type C/genetics , Proteins/genetics , Animals , Apolipoproteins B/metabolism , Cells, Cultured , Cholesterol/genetics , Cholesterol/metabolism , Disease Models, Animal , Histone Deacetylase Inhibitors/pharmacokinetics , Homeostasis/drug effects , Humans , Hydroxamic Acids/pharmacokinetics , Intracellular Signaling Peptides and Proteins , Liver/metabolism , Liver/pathology , Mice , Mice, Inbred C57BL , Mutation, Missense , Niemann-Pick C1 Protein , Niemann-Pick Disease, Type C/pathology , Niemann-Pick Disease, Type C/physiopathology , Proteins/metabolism , Transcriptome/drug effects , Vorinostat
4.
Mol Cell Biol ; 36(12): 1750-63, 2016 06 15.
Article in English | MEDLINE | ID: mdl-27044869

ABSTRACT

DNA double-strand breaks (DSBs) pose a threat to genome stability and are repaired through multiple mechanisms. Rarely, telomerase, the enzyme that maintains telomeres, acts upon a DSB in a mutagenic process termed telomere healing. The probability of telomere addition is increased at specific genomic sequences termed sites of repair-associated telomere addition (SiRTAs). By monitoring repair of an induced DSB, we show that SiRTAs on chromosomes V and IX share a bipartite structure in which a core sequence (Core) is directly targeted by telomerase, while a proximal sequence (Stim) enhances the probability of de novo telomere formation. The Stim and Core sequences are sufficient to confer a high frequency of telomere addition to an ectopic site. Cdc13, a single-stranded DNA binding protein that recruits telomerase to endogenous telomeres, is known to stimulate de novo telomere addition when artificially recruited to an induced DSB. Here we show that the ability of the Stim sequence to enhance de novo telomere addition correlates with its ability to bind Cdc13, indicating that natural sites at which telomere addition occurs at high frequency require binding by Cdc13 to a sequence 20 to 100 bp internal from the site at which telomerase acts to initiate de novo telomere addition.


Subject(s)
Enhancer Elements, Genetic , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/genetics , Telomere-Binding Proteins/metabolism , Telomere/genetics , Binding Sites , DNA Breaks, Double-Stranded , DNA Repair , DNA, Fungal/chemistry , DNA, Fungal/metabolism , Genome, Fungal , Telomerase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL