Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
bioRxiv ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38826477

ABSTRACT

Bones and brain are intricately connected and scientific interest in their interaction is growing. This has become particularly evident in the framework of clinical applications for various medical conditions, such as obesity and osteoporosis. The adverse effects of obesity on brain health have long been recognised, but few brain imaging studies provide sophisticated body composition measures. Here we propose to extract the following bone- and adiposity-related measures from T1-weighted MR images of the head: an approximation of skull bone mineral density (BMD), skull bone thickness, and two approximations of subcutaneous fat (i.e., the intensity and thickness of soft non-brain head tissue). The measures pertaining to skull BMD, skull bone thickness, and intensi-ty-based adiposity proxy proved to be reliable ( r =.93/.83/.74, p <.001) and valid, with high correlations to DXA-de-rived head BMD values (rho=.70, p <.001) and MRI-derived abdominal subcutaneous adipose volume (rho=.62, p <.001). Thickness-based adiposity proxy had only a low retest reliability ( r =.58, p <.001).The outcomes of this study constitute an important step towards extracting relevant non-brain features from available brain scans.

2.
Hum Brain Mapp ; 45(3): e26632, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38379519

ABSTRACT

Since the introduction of the BrainAGE method, novel machine learning methods for brain age prediction have continued to emerge. The idea of estimating the chronological age from magnetic resonance images proved to be an interesting field of research due to the relative simplicity of its interpretation and its potential use as a biomarker of brain health. We revised our previous BrainAGE approach, originally utilising relevance vector regression (RVR), and substituted it with Gaussian process regression (GPR), which enables more stable processing of larger datasets, such as the UK Biobank (UKB). In addition, we extended the global BrainAGE approach to regional BrainAGE, providing spatially specific scores for five brain lobes per hemisphere. We tested the performance of the new algorithms under several different conditions and investigated their validity on the ADNI and schizophrenia samples, as well as on a synthetic dataset of neocortical thinning. The results show an improved performance of the reframed global model on the UKB sample with a mean absolute error (MAE) of less than 2 years and a significant difference in BrainAGE between healthy participants and patients with Alzheimer's disease and schizophrenia. Moreover, the workings of the algorithm show meaningful effects for a simulated neocortical atrophy dataset. The regional BrainAGE model performed well on two clinical samples, showing disease-specific patterns for different levels of impairment. The results demonstrate that the new improved algorithms provide reliable and valid brain age estimations.


Subject(s)
Alzheimer Disease , Schizophrenia , Humans , Workflow , Brain/diagnostic imaging , Brain/pathology , Schizophrenia/diagnostic imaging , Schizophrenia/pathology , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/pathology , Machine Learning , Magnetic Resonance Imaging/methods
3.
Eur Radiol ; 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38189981

ABSTRACT

OBJECTIVES: This study investigates the influence of normal cohort (NC) size and the impact of different NCs on automated MRI-based brain atrophy estimation. METHODS: A pooled NC of 3945 subjects (NCpool) was retrospectively created from five publicly available cohorts. Voxel-wise gray matter volume atrophy maps were calculated for 48 Alzheimer's disease (AD) patients (55-82 years) using veganbagel and dynamic normal templates with an increasing number of healthy subjects randomly drawn from NCpool (initially three, and finally 100 subjects). Over 100 repeats of the process, the mean over a voxel-wise standard deviation of gray matter z-scores was established and plotted against the number of subjects in the templates. The knee point of these curves was defined as the minimum number of subjects required for consistent brain atrophy estimation. Atrophy maps were calculated using each NC for AD patients and matched healthy controls (HC). Two readers rated the extent of mesiotemporal atrophy to discriminate AD/HC. RESULTS: The maximum knee point was at 15 subjects. For 21 AD/21 HC, a sufficient number of subjects were available in each NC for validation. Readers agreed on the AD diagnosis in all cases (Kappa for the extent of atrophy, 0.98). No differences in diagnoses between NCs were observed (intraclass correlation coefficient, 0.91; Cochran's Q, p = 0.19). CONCLUSION: At least 15 subjects should be included in age- and sex-specific normal templates for consistent brain atrophy estimation. In the study's context, qualitative interpretation of regional atrophy allows reliable AD diagnosis with a high inter-reader agreement, irrespective of the NC used. CLINICAL RELEVANCE STATEMENT: The influence of normal cohorts (NCs) on automated brain atrophy estimation, typically comparing individual scans to NCs, remains largely unexplored. Our study establishes the minimum number of NC-subjects needed and demonstrates minimal impact of different NCs on regional atrophy estimation. KEY POINTS: • Software-based brain atrophy estimation often relies on normal cohorts for comparisons. • At least 15 subjects must be included in an age- and sex-specific normal cohort. • Using different normal cohorts does not influence regional atrophy estimation.

4.
Front Aging Neurosci ; 15: 1287304, 2023.
Article in English | MEDLINE | ID: mdl-38020770

ABSTRACT

Objectives: Previous research has found an association of low bone mineral density (BMD) and regional gray matter (GM) volume loss in Alzheimer's disease (AD). We were interested whether BMD is associated with GM volume decrease in brains of a healthy elderly population from the UK Biobank. Materials and methods: T1-weighted images from 5,518 women (MAge = 70.20, SD = 3.54; age range: 65-82 years) and 7,595 men (MAge = 70.84, SD = 3.68; age range: 65-82 years) without neurological or psychiatric impairments were included in voxel-based morphometry (VBM) analysis in CAT12 with threshold-free-cluster-enhancement (TFCE) across the whole brain. Results: We found a significant decrease of GM volume in women in the superior frontal gyri, middle temporal gyri, fusiform gyri, temporal poles, cingulate gyri, precunei, right parahippocampal gyrus and right hippocampus, right ventral diencephalon, and right pre- and postcentral gyrus. Only small effects were found in men in subcallosal area, left basal forebrain and entorhinal area. Conclusion: BMD is associated with low GM volume in women but less in men in regions afflicted in the early-stages of AD even in a sample without neurodegenerative diseases.

5.
Insights Imaging ; 13(1): 54, 2022 Mar 26.
Article in English | MEDLINE | ID: mdl-35348936

ABSTRACT

BACKGROUND: Defacing has become mandatory for anonymization of brain MRI scans; however, concerns regarding data integrity were raised. Thus, we systematically evaluated the effect of different defacing procedures on automated brain atrophy estimation. METHODS: In total, 268 Alzheimer's disease patients were included from ADNI, which included unaccelerated (n = 154), within-session unaccelerated repeat (n = 67) and accelerated 3D T1 imaging (n = 114). Atrophy maps were computed using the open-source software veganbagel for every original, unmodified scan and after defacing using afni_refacer, fsl_deface, mri_deface, mri_reface, PyDeface or spm_deface, and the root-mean-square error (RMSE) between z-scores was calculated. RMSE values derived from unaccelerated and unaccelerated repeat imaging served as a benchmark. Outliers were defined as RMSE > 75th percentile and by using Grubbs's test. RESULTS: Benchmark RMSE was 0.28 ± 0.1 (range 0.12-0.58, 75th percentile 0.33). Outliers were found for unaccelerated and accelerated T1 imaging using the 75th percentile cutoff: afni_refacer (unaccelerated: 18, accelerated: 16), fsl_deface (unaccelerated: 4, accelerated: 18), mri_deface (unaccelerated: 0, accelerated: 15), mri_reface (unaccelerated: 0, accelerated: 2) and spm_deface (unaccelerated: 0, accelerated: 7). PyDeface performed best with no outliers (unaccelerated mean RMSE 0.08 ± 0.05, accelerated mean RMSE 0.07 ± 0.05). The following outliers were found according to Grubbs's test: afni_refacer (unaccelerated: 16, accelerated: 13), fsl_deface (unaccelerated: 10, accelerated: 21), mri_deface (unaccelerated: 7, accelerated: 20), mri_reface (unaccelerated: 7, accelerated: 6), PyDeface (unaccelerated: 5, accelerated: 8) and spm_deface (unaccelerated: 10, accelerated: 12). CONCLUSION: Most defacing approaches have an impact on atrophy estimation, especially in accelerated 3D T1 imaging. Only PyDeface showed good results with negligible impact on atrophy estimation.

6.
Elife ; 92020 11 23.
Article in English | MEDLINE | ID: mdl-33226338

ABSTRACT

Chimpanzees are among the closest living relatives to humans and, as such, provide a crucial comparative model for investigating primate brain evolution. In recent years, human brain mapping has strongly benefited from enhanced computational models and image processing pipelines that could also improve data analyses in animals by using species-specific templates. In this study, we use structural MRI data from the National Chimpanzee Brain Resource (NCBR) to develop the chimpanzee brain reference template Juna.Chimp for spatial registration and the macro-anatomical brain parcellation Davi130 for standardized whole-brain analysis. Additionally, we introduce a ready-to-use image processing pipeline built upon the CAT12 toolbox in SPM12, implementing a standard human image preprocessing framework in chimpanzees. Applying this approach to data from 194 subjects, we find strong evidence for human-like age-related gray matter atrophy in multiple regions of the chimpanzee brain, as well as, a general rightward asymmetry in brain regions.


Subject(s)
Brain Mapping/veterinary , Brain/anatomy & histology , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/veterinary , Pan troglodytes/anatomy & histology , Animals , Brain Mapping/methods , Female , Magnetic Resonance Imaging/methods , Male , Software
7.
Cereb Cortex ; 30(9): 5014-5027, 2020 07 30.
Article in English | MEDLINE | ID: mdl-32377664

ABSTRACT

In recent years, replicability of neuroscientific findings, specifically those concerning correlates of morphological properties of gray matter (GM), have been subject of major scrutiny. Use of different processing pipelines and differences in their estimates of the macroscale GM may play an important role in this context. To address this issue, here, we investigated the cortical thickness estimates of three widely used pipelines. Based on analyses in two independent large-scale cohorts, we report high levels of within-pipeline reliability of the absolute cortical thickness-estimates and comparable spatial patterns of cortical thickness-estimates across all pipelines. Within each individual, absolute regional thickness differed between pipelines, indicating that in-vivo thickness measurements are only a proxy of actual thickness of the cortex, which shall only be compared within the same software package and thickness estimation technique. However, at group level, cortical thickness-estimates correlated strongly between pipelines, in most brain regions. The smallest between-pipeline correlations were observed in para-limbic areas and insula. These regions also demonstrated the highest interindividual variability and the lowest reliability of cortical thickness-estimates within each pipeline, suggesting that structural variations within these regions should be interpreted with caution.


Subject(s)
Brain Mapping/methods , Cerebral Cortex/anatomy & histology , Image Processing, Computer-Assisted/methods , Software , Adult , Datasets as Topic , Female , Gray Matter/anatomy & histology , Humans , Magnetic Resonance Imaging , Male
8.
Sci Rep ; 10(1): 5737, 2020 03 31.
Article in English | MEDLINE | ID: mdl-32235885

ABSTRACT

Spatial smoothing of functional magnetic resonance imaging (fMRI) data can be performed on volumetric images and on the extracted surface of the brain. Smoothing on the unfolded cortex should theoretically improve the ability to separate signals between brain areas that are near together in the folded cortex but are more distant in the unfolded cortex. However, surface-based method approaches (SBA) are currently not utilized as standard procedure in the preprocessing of neuroimaging data. Recent improvements in the quality of cortical surface modeling and improvements in its usability nevertheless advocate this method. In the current study, we evaluated the benefits of an up-to-date surface-based smoothing in comparison to volume-based smoothing. We focused on the effect of signal contamination between different functional systems using the primary motor and primary somatosensory cortex as an example. We were particularly interested in how this signal contamination influences the results of activity and connectivity analyses for these brain regions. We addressed this question by performing fMRI on 19 subjects during a tactile stimulation paradigm and by using simulated BOLD responses. We demonstrated that volume-based smoothing causes contamination of the primary motor cortex by somatosensory cortical responses, leading to false positive motor activation. These false positive motor activations were not found by using surface-based smoothing for reasonable kernel sizes. Accordingly, volume-based smoothing caused an exaggeration of connectivity estimates between these regions. In conclusion, this study showed that surface-based smoothing decreases signal contamination considerably between neighboring functional brain regions and improves the validity of activity and connectivity results.


Subject(s)
Brain/diagnostic imaging , Image Processing, Computer-Assisted/methods , Nerve Net/diagnostic imaging , Adult , Brain Mapping , Female , Humans , Magnetic Resonance Imaging , Male , Sensitivity and Specificity , Young Adult
10.
Dev Psychopathol ; 30(3): 743-762, 2018 08.
Article in English | MEDLINE | ID: mdl-30068407

ABSTRACT

The prenatal period is increasingly considered as a crucial target for the primary prevention of neurodevelopmental and psychiatric disorders. Understanding their pathophysiological mechanisms remains a great challenge. Our review reveals new insights from prenatal brain development research, involving (epi)genetic research, neuroscience, recent imaging techniques, physical modeling, and computational simulation studies. Studies examining the effect of prenatal exposure to maternal distress on offspring brain development, using brain imaging techniques, reveal effects at birth and up into adulthood. Structural and functional changes are observed in several brain regions including the prefrontal, parietal, and temporal lobes, as well as the cerebellum, hippocampus, and amygdala. Furthermore, alterations are seen in functional connectivity of amygdalar-thalamus networks and in intrinsic brain networks, including default mode and attentional networks. The observed changes underlie offspring behavioral, cognitive, emotional development, and susceptibility to neurodevelopmental and psychiatric disorders. It is concluded that used brain measures have not yet been validated with regard to sensitivity, specificity, accuracy, or robustness in predicting neurodevelopmental and psychiatric disorders. Therefore, more prospective long-term longitudinal follow-up studies starting early in pregnancy should be carried out, in order to examine brain developmental measures as mediators in mediating the link between prenatal stress and offspring behavioral, cognitive, and emotional problems and susceptibility for disorders.


Subject(s)
Brain/embryology , Brain/physiopathology , Neurodevelopmental Disorders/physiopathology , Prenatal Exposure Delayed Effects/physiopathology , Stress, Psychological/complications , Amygdala/embryology , Amygdala/physiopathology , Cerebellum/embryology , Cerebellum/physiopathology , Female , Hippocampus/embryology , Hippocampus/physiopathology , Humans , Infant , Infant, Newborn , Male , Nerve Net/embryology , Nerve Net/physiopathology , Neurodevelopmental Disorders/psychology , Parietal Lobe/embryology , Parietal Lobe/physiopathology , Prefrontal Cortex/embryology , Prefrontal Cortex/physiopathology , Pregnancy , Prenatal Exposure Delayed Effects/psychology , Prospective Studies , Risk Factors , Temporal Lobe/embryology , Temporal Lobe/physiopathology
11.
Front Aging Neurosci ; 9: 92, 2017.
Article in English | MEDLINE | ID: mdl-28443017

ABSTRACT

Contrary to the known benefits from a moderate dietary reduction during adulthood on life span and health, maternal nutrient reduction during pregnancy is supposed to affect the developing brain, probably resulting in impaired brain structure and function throughout life. Decreased fetal nutrition delivery is widespread in both developing and developed countries, caused by poverty and natural disasters, but also due to maternal dieting, teenage pregnancy, pregnancy in women over 35 years of age, placental insufficiency, or multiples. Compromised development of fetal cerebral structures was already shown in our baboon model of moderate maternal nutrient reduction. The present study was designed to follow-up and evaluate the effects of moderate maternal nutrient reduction on individual brain aging in the baboon during young adulthood (4-7 years; human equivalent 14-24 years), applying a novel, non-invasive neuroimaging aging biomarker. The study reveals premature brain aging of +2.7 years (p < 0.01) in the female baboon exposed to fetal undernutrition. The effects of moderate maternal nutrient reduction on individual brain aging occurred in the absence of fetal growth restriction or marked maternal weight reduction at birth, which stresses the significance of early nutritional conditions in life-long developmental programming. This non-invasive MRI biomarker allows further longitudinal in vivo tracking of individual brain aging trajectories to assess the life-long effects of developmental and environmental influences in programming paradigms, aiding preventive and curative treatments on cerebral atrophy in experimental animal models and humans.

12.
Neuroimage ; 65: 336-48, 2013 Jan 15.
Article in English | MEDLINE | ID: mdl-23041529

ABSTRACT

Several properties of the human brain cortex, e.g., cortical thickness and gyrification, have been found to correlate with the progress of neuropsychiatric disorders. The relationship between brain structure and function harbors a broad range of potential uses, particularly in clinical contexts, provided that robust methods for the extraction of suitable representations of the brain cortex from neuroimaging data are available. One such representation is the computationally defined central surface (CS) of the brain cortex. Previous approaches to semi-automated reconstruction of this surface relied on image segmentation procedures that required manual interaction, thereby rendering them error-prone and complicating the analysis of brains that were not from healthy human adults. Validation of these approaches and thickness measures is often done only for simple artificial phantoms that cover just a few standard cases. Here, we present a new fully automated method that allows for measurement of cortical thickness and reconstructions of the CS in one step. It uses a tissue segmentation to estimate the WM distance, then projects the local maxima (which is equal to the cortical thickness) to other GM voxels by using a neighbor relationship described by the WM distance. This projection-based thickness (PBT) allows the handling of partial volume information, sulcal blurring, and sulcal asymmetries without explicit sulcus reconstruction via skeleton or thinning methods. Furthermore, we introduce a validation framework using spherical and brain phantoms that confirms accurate CS construction and cortical thickness measurement under a wide set of parameters for several thickness levels. The results indicate that both the quality and computational cost of our method are comparable, and may be superior in certain respects, to existing approaches.


Subject(s)
Algorithms , Brain Mapping/methods , Brain/anatomy & histology , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging , Adult , Humans , Image Enhancement/methods , Imaging, Three-Dimensional/methods , Phantoms, Imaging
13.
Front Neuroinform ; 6: 3, 2012.
Article in English | MEDLINE | ID: mdl-22435060

ABSTRACT

The aging brain's structural development constitutes a spatiotemporal process that is accessible by MR-based computational morphometry. Here we introduce basic concepts and analytical approaches to quantify age-related differences and changes in neuroanatomical images of the human brain. The presented models first address the estimation of age trajectories, then we consider inter-individual variations of structural decline, using a repeated measures design. We concentrate our overview on preprocessed neuroanatomical images of the human brain to facilitate practical applications to diverse voxel- and surface-based structural markers. Together these methods afford analysis of aging brain structure in relation to behavioral, health, or cognitive parameters.

14.
Hum Brain Mapp ; 33(10): 2377-89, 2012 Oct.
Article in English | MEDLINE | ID: mdl-21898677

ABSTRACT

The aim of this large-sample cross-sectional voxel-based morphometry (VBM) study of anatomical brain data was to investigate linear and nonlinear age-related trajectories of grey matter volume in the human brain during the adult lifespan. To date, there are only a few structural brain studies investigating local nonlinear aspects at the voxel level, i.e., without using anatomical ROIs as a priori hypothesis. Therefore, we analyzed 547 T1-weighted MR images of healthy adult brains with an age range of 19 to 86 years, including 161 scans of subjects with ages 60 and older. We found that the gray matter volume in some regions did not linearly decrease over time, but rather exhibited a delayed decline. Nonlinear age trajectories were observed in the medial temporal lobe regions, the basal ganglia, and parts of the cerebellum. Their trajectories indicated a preservation of grey matter volume during the early adult lifespan. Interestingly, we found nonlinear grey matter structural dynamics specifically in parts of the brain that have been extensively discussed in the context of learning and memory. We propose a hypothesis in relation to the functional role of these brain regions that may explain these results.


Subject(s)
Aging , Brain Mapping , Brain/anatomy & histology , Neural Pathways/anatomy & histology , Adult , Aged , Aged, 80 and over , Female , Humans , Image Interpretation, Computer-Assisted , Magnetic Resonance Imaging , Male , Middle Aged , Nonlinear Dynamics , Young Adult
15.
Hum Brain Mapp ; 32(7): 1109-24, 2011 Jul.
Article in English | MEDLINE | ID: mdl-20665722

ABSTRACT

Surface reconstruction methods allow advanced analysis of structural and functional brain data beyond what can be achieved using volumetric images alone. Automated generation of cortical surface meshes from 3D brain MRI often leads to topological defects and geometrical artifacts that must be corrected to permit subsequent analysis. Here, we propose a novel method to repair topological defects using a surface reconstruction that relies on spherical harmonics. First, during reparameterization of the surface using a tiled platonic solid, the original MRI intensity values are used as a basis to select either a "fill" or "cut" operation for each topological defect. We modify the spherical map of the uncorrected brain surface mesh, such that certain triangles are favored while searching for the bounding triangle during reparameterization. Then, a low-pass filtered alternative reconstruction based on spherical harmonics is patched into the reconstructed surface in areas that previously contained defects. Self-intersections are repaired using a local smoothing algorithm that limits the number of affected points to less than 0.1% of the total, and as a last step, all modified points are adjusted based on the T1 intensity. We found that the corrected reconstructions have reduced distance error metrics compared with a "gold standard" surface created by averaging 12 scans of the same brain. Ninety-three percent of the topological defects in a set of 10 scans of control subjects were accurately corrected. The entire process takes 6-8 min of computation time. Further improvements are discussed, especially regarding the use of the T1-weighted image to make corrections.


Subject(s)
Artifacts , Brain Mapping/methods , Brain/anatomy & histology , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging , Algorithms , Humans
16.
Eur Arch Psychiatry Clin Neurosci ; 260(5): 419-26, 2010 Aug.
Article in English | MEDLINE | ID: mdl-19915989

ABSTRACT

Evidence for white matter abnormalities in patients with schizophrenia is increasing. Decreased fractional anisotropy (FA) in interhemispheric commissural fibers as well as long-ranging fronto-parietal association fibers belongs to the most frequent findings. The present study used tract-based spatial statistics to investigate white matter integrity in 35 patients with schizophrenia and 35 healthy volunteers. We found that patients exhibited significantly decreased FA relative to healthy subjects in the corpus callosum, the cerebral peduncle, the left inferior fronto-occipital fasciculus, the anterior thalamic radiation, the right posterior corona radiata, the middle cerebellar peduncle, and the right superior longitudinal fasciculus. Increased FA was detectable in the inferior sections of the corticopontine-cerebellar circuit. Present data indicate extended cortical-subcortical alterations of white matter integrity in schizophrenia using advanced data analysis strategies. They corroborate preceding findings of white matter structural deficits in mainly long-ranging association fibers and provide first evidence for neuroplastic changes in terms of an increased directionality in more inferior fiber tracts.


Subject(s)
Cerebellum/pathology , Cerebral Cortex/pathology , Nerve Fibers, Myelinated/physiology , Pons/pathology , Schizophrenia/pathology , Adult , Anisotropy , Brain Mapping , Diffusion Magnetic Resonance Imaging , Female , Humans , Male , Neural Pathways/pathology , Young Adult
17.
Eur J Neurosci ; 30(11): 2205-10, 2009 Dec 03.
Article in English | MEDLINE | ID: mdl-20128855

ABSTRACT

Recent studies applying functional magnetic resonance imaging have focused on the description of cerebral substrates of changes in cardiac function during diverse autonomic maneuvers or stressful cognitive tasks. These studies might be limited by the indistinguishable neuronal activity due to cognitive processes, which are known to influence autonomic function, and the 'baseline' activity in the central autonomic network. We therefore investigated 26 healthy volunteers in the magnetic resonance scanner to simultaneously obtain functional brain images and RR intervals (intervals between ventricular depolarizations) of the high-resolution electrocardiogram. The mean RR interval length within each functional scan was computed, which was finally convolved with the canonical hemodynamic response function to obtain a regressor for the functional time series. The resulting individual contrast image indicated a positive covariation of the blood oxygen level-dependent signal and RR interval length in the ventromedial prefrontal cortex (vmPFC). Furthermore, a reduced mean cross-approximate entropy value was shown for the interaction between the vmPFC and individual RR intervals. This suggests reduced asynchrony between the heart rate and vmPFC activity in contrast to other brain areas. Our findings confirm data obtained in animals describing the vmPFC as an important forebrain structure of the central autonomic network and an influence of the vmPFC in the cortical generation of efferent vagal activity. This finding needs to be investigated in diseases with known suppression of efferent vagal modulation.


Subject(s)
Heart Rate/physiology , Prefrontal Cortex/physiology , Rest/physiology , Brain Mapping , Electrocardiography/methods , Entropy , Female , Humans , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Male , Nonlinear Dynamics , Oxygen/blood , Prefrontal Cortex/blood supply
18.
Med Image Comput Comput Assist Interv ; 12(Pt 2): 125-32, 2009.
Article in English | MEDLINE | ID: mdl-20426104

ABSTRACT

A brain surface reconstruction allows advanced analysis of structural and functional brain data that is not possible using volumetric data alone. However, the generation of a brain surface mesh from MRI data often introduces topological defects and artifacts that must be corrected. We show that it is possible to accurately correct these errors using spherical harmonics. Our results clearly demonstrate that brain surface meshes reconstructed using spherical harmonics are free from topological defects and large artifacts that were present in the uncorrected brain surface. Visual inspection reveals that the corrected surfaces are of very high quality. The spherical harmonic surfaces are also quantitatively validated by comparing the surfaces to an "ideal" brain based on a manually corrected average of twelve scans of the same subject. In conclusion, the spherical harmonics approach is a direct, computationally fast method to correct topological errors.


Subject(s)
Algorithms , Artifacts , Brain/anatomy & histology , Image Interpretation, Computer-Assisted/methods , Imaging, Three-Dimensional/methods , Magnetic Resonance Imaging/methods , Pattern Recognition, Automated/methods , Humans , Image Enhancement/methods , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...