Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 365(6460): 1475-1478, 2019 09 27.
Article in English | MEDLINE | ID: mdl-31604278

ABSTRACT

Plasmon-coupled circular dichroism has emerged as a promising approach for ultrasensitive detection of biomolecular conformations through coupling between molecular chirality and surface plasmons. Chiral nanoparticle assemblies without chiral molecules present also have large optical activities. We apply single-particle circular differential scattering spectroscopy coupled with electron imaging and simulations to identify both structural chirality of plasmonic aggregates and plasmon-coupled circular dichroism induced by chiral proteins. We establish that both chiral aggregates and just a few proteins in interparticle gaps of achiral assemblies are responsible for the ensemble signal, but single nanoparticles do not contribute. We furthermore find that the protein plays two roles: It transfers chirality to both chiral and achiral plasmonic substrates, and it is also responsible for the chiral three-dimensional assembly of nanorods. Understanding these underlying factors paves the way toward sensing the chirality of single biomolecules.


Subject(s)
Circular Dichroism , Nanotubes/chemistry , Protein Conformation , Serum Albumin, Bovine/chemistry , Cryoelectron Microscopy , Gold , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Spectrum Analysis, Raman
2.
Inorg Chem ; 55(24): 12651-12659, 2016 Dec 19.
Article in English | MEDLINE | ID: mdl-27989172

ABSTRACT

Two methods to correlate and predict experimental redox potentials for cerium complexes were evaluated. Seventeen previously reported cerium complexes were computed using DFT methods in both the CeIII and CeIV oxidation states with a dichloromethane solvent continuum. In the first computational approach, the ΔGo(CeIV/CeIII) was determined for each of the compounds and these values were correlated with the experimental E1/2 values measured in dichloromethane, referenced to the ferrocene/ferrocenium couple. The second method involved correlating the energies of the CeIV LUMOs (lowest unoccupied molecular orbitals) with the experimental redox potentials, E1/2. The predictive capabilities of these two correlative methods were tested using a new cerium hydroxylamine complex, Ce(ODiNOx)2 (ODiNOx = bis(2-tert-butylhydroxylaminatobenzyl) ether). All 18 complexes studied in this paper were combined with the 15 complexes determined in acetonitrile from a previously published correlation by our group. These sets of data allowed us to develop two methods for predicting the redox potential of cerium complexes regardless of the solvent for the experimental measurement.

SELECTION OF CITATIONS
SEARCH DETAIL
...