Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Toxicol ; 39(5): 2528-2544, 2024 May.
Article in English | MEDLINE | ID: mdl-38189174

ABSTRACT

The therapeutic outcomes for bladder cancer (BLCA) remain suboptimal. Concurrently, there is a growing appreciation for the role of neoantigens in tumors. In this study, we explored the mechanisms underlying the involvement of neoantigen-associated genes in BLCA and their impact on prognosis. Our analysis incorporated both single-cell sequencing and bulk sequencing data sourced from publicly available databases. By employing a comprehensive set of 10 machine learning algorithms, we generated 101 algorithm combinations. The optimal combination, determined based on consistency indices, was utilized to construct a prognostic model comprising nine genes (CAPG, ACTA2, PDIA6, AKNA, PTMS, SNAP23, ID2, CD3G, SP140). Subsequently, we validated this model in an independent cohort, demonstrating its robust testing efficacy. Moreover, we explored the correlations between various clinical traits, model scores, and genes. Leveraging extensive public data resources, we conducted a drug sensitivity analysis to provide insights for targeted drug screening. Additionally, consensus clustering analysis and immune infiltration analysis were performed on bulk sequencing datasets and immunotherapy cohorts. These analyses yield valuable insights into the role of neoantigens in BLCA, guiding future research endeavors.


Subject(s)
Urinary Bladder Neoplasms , Humans , Urinary Bladder Neoplasms/genetics , Algorithms , Drug Evaluation, Preclinical , DNA-Binding Proteins , Nuclear Proteins , Transcription Factors
2.
Comput Biol Med ; 169: 107930, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38199215

ABSTRACT

Hepatocellular carcinoma (HCC) is associated with a high mortality rate, where resistance to immunotherapy and chemotherapy plays a crucial role. A newly identified form of cell death called disulfidptosis shows promise, but its biological mechanism in HCC remains uncertain. In this study, a prognostic model was developed for Disulfidptosis-related long non-coding RNAs (DRLs) from 370 HCC patients sourced from TCGA-LIHC, utilizing five key features: AC026356.1, AC073254.1, PXN-AS1 expression, AC026412.3, and AC099066.2. High-risk HCC patients had lower survival, CD4+ T cell infiltration, and elevated immune checkpoint gene expression. Furthermore, based on the features of DRLs, HCC was classified into three subtypes. Notably, patients belonging to different subtypes demonstrated varying overall survival rates, immune cell infiltration patterns, and sensitivity to immune therapy. Moreover, the novel DRL AC026412.3 (HR = 40.207) emerged as the most significant prognostic factor, exhibiting high expression across all HCC cells. Elevated expression of AC026412.3 promoted HCC cell proliferation and induced resistance to gefitinib. In conclusion, we have discovered five DRLs and constructed a prognostic risk model. Our findings validate the correlation between DRL-related prognostic models, tumor subtypes, and the HCC immune microenvironment along with its implications for immunotherapy. Moreover, further investigation into the molecular mechanisms of key biomarkers like AC026412.3 in the future will contribute significantly to advancing our comprehension of HCC's pathogenesis and drug resistance mechanisms.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , RNA, Long Noncoding , Humans , Cell Line , Drug Resistance , Tumor Microenvironment
3.
Hepatology ; 79(1): 149-166, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37676481

ABSTRACT

BACKGROUND AND AIMS: Hyperlipidemia has been extensively recognized as a high-risk factor for NASH; however, clinical susceptibility to NASH is highly heterogeneous. The key controller(s) of NASH susceptibility in patients with hyperlipidemia has not yet been elucidated. Here, we aimed to reveal the key regulators of NASH in patients with hyperlipidemia and to explore its role and underlying mechanisms. APPROACH AND RESULTS: To identify the predominant suppressors of NASH in the setting of hyperlipidemia, we collected liver biopsy samples from patients with hyperlipidemia, with or without NASH, and performed RNA-sequencing analysis. Notably, decreased Lineage specific Interacting Motif domain only 7 (LMO7) expression robustly correlated with the occurrence and severity of NASH. Although overexpression of LMO7 effectively blocked hepatic lipid accumulation and inflammation, LMO7 deficiency in hepatocytes greatly exacerbated diet-induced NASH progression. Mechanistically, lysine 48 (K48)-linked ubiquitin-mediated proteasomal degradation of tripartite motif-containing 47 (TRIM47) and subsequent inactivation of the c-Jun N-terminal kinase (JNK)/p38 mitogen-activated protein kinase (MAPK) cascade are required for the protective function of LMO7 in NASH. CONCLUSIONS: These findings provide proof-of-concept evidence supporting LMO7 as a robust suppressor of NASH in the context of hyperlipidemia, indicating that targeting the LMO7-TRIM47 axis is a promising therapeutic strategy for NASH.


Subject(s)
Hyperlipidemias , Non-alcoholic Fatty Liver Disease , Humans , Animals , Mice , Non-alcoholic Fatty Liver Disease/pathology , Hyperlipidemias/complications , Liver/pathology , Inflammation/metabolism , Hepatocytes/metabolism , Mice, Inbred C57BL , Disease Models, Animal , Tripartite Motif Proteins/metabolism , Neoplasm Proteins/metabolism , Nuclear Proteins/metabolism
4.
J Agric Food Chem ; 67(3): 887-894, 2019 Jan 23.
Article in English | MEDLINE | ID: mdl-30608682

ABSTRACT

Food-dervied biopolymer nanogels have recently received considerable attention as favorable carrier systems for nutraceuticals and drugs. In the present study, new biocompatible and self-assembled acylated rapeseed protein isolate (ARPI)-based nanogels were fabricated for potential hydrophobic drug delivery by chemical acylation and heat-induced protein denaturation. The effects of the ARPI concentration, pH, heat temperature, and heat time on the physiochemical properties of self-assembled ARPI nanogels were investigated. The optimized ARPI nanogels were characterized by a hydrodiameter of 170 nm in size, spherical morphology, and light core-dark shell structure. In comparison to native rapeseed protein isolates and ARPI without the heat treatment, ARPI nanogels as a result of dual acylation and heat processes exhibited significantly altered spatial secondary and tertiary structures, increased surface hydrophobicity, and decreased free sulfhydryl contents of the protein. Such properties endow amphilic ARPI with the self-aggregating ability, resulting in the hydrophobic core with formations of covalent disulfide bonds and the hydrophilic shell with succinyl moieties exposed to the water side. Such a cross-linked structure allowed for ARPI nanogels to be resistant against a broad array of pH and ionic strength as well as lyophilization and dilution. ARPI nanogels demonstrated 95% encapsulation efficiency of hydrophobic compound curcumin and significantly increased its anticancer activity against multiple cancer cell lines.


Subject(s)
Curcumin/chemistry , Drug Delivery Systems/methods , Plant Proteins/chemistry , Acylation , Biopolymers/chemistry , Brassica rapa/chemistry , Cell Line, Tumor , Cell Survival/drug effects , Curcumin/pharmacology , Drug Carriers/chemistry , Drug Compounding , Drug Delivery Systems/instrumentation , Gels/chemistry , Hot Temperature , Humans , Hydrogen-Ion Concentration , Hydrophobic and Hydrophilic Interactions , Nanostructures/chemistry , Temperature
5.
Toxicol Appl Pharmacol ; 265(2): 190-9, 2012 Dec 01.
Article in English | MEDLINE | ID: mdl-23088858

ABSTRACT

Podophyllotoxin (POD) is a naturally occurring lignan with pronounced antineoplastic and antiviral properties. POD binds to tubulin and prevents the formation of mitotic spindle. Although cases of overdose or accidental ingestion are quite often, no specific therapy is currently available to treat the POD intoxication. In the current investigation, the protective effects and mechanisms of curcumin (CUR) on podophyllotoxin toxicity were evaluated in vitro and in vivo. The results showed that CUR could protect POD-induced cytotoxicity by recovering the G2/M arrest and decrease the changes of membrane potential and microtubule structure in Vero cells. A significant decrease of mortality rates was observed in Swiss mice treated by intragastrical administration of POD+CUR as compared with POD alone. The POD+CUR group also exhibited decreases in plasma transaminases, alkaline phosphatase, lactate dehydrogenase, plasma urea, creatinine and malondialdehyde level but elevated superoxide dismutase and glutathione levels as compared to the POD group. Histological examination of the liver and kidney demonstrated less morphological changes in the treatment of POD+CUR as compared with POD alone. The mechanism of the protective effects might be due to the competitive binding of CUR with POD in the same colchicines binding site as revealed by the tubulin polymerization assay and the molecular docking analysis, and the antioxidant activity against the oxidative stress induced by POD. In summary, both in vitro and in vivo data indicated the promising role of CUR as a protective agent against the POD poisoning.


Subject(s)
Curcumin/pharmacology , Oxidative Stress/drug effects , Podophyllotoxin/toxicity , Tubulin/metabolism , Animals , Cell Cycle/drug effects , Cell Cycle/physiology , Chlorocebus aethiops , Drug Interactions , Flow Cytometry , Histocytochemistry , Kidney/metabolism , Liver/metabolism , Male , Mice , Models, Molecular , Molecular Docking Simulation , Oxidative Stress/physiology , Specific Pathogen-Free Organisms , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...