Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 191
Filter
1.
Orphanet J Rare Dis ; 19(1): 341, 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39272138

ABSTRACT

BACKGROUND: Hereditary angioedema (HAE) is a rare autosomal dominant genetic disease characterized by recurrent edema and a potentially fatal risk. Despite its severity, there is a notable lack of effective methods for predicting and preventing HAE attacks. This study aims to thoroughly investigate the underlying pathological mechanisms of HAE and identify potential biomarkers that could aid in its prediction and prevention. RESULTS: In our investigation, we have discovered a novel pathogenic variant of the SERPING1 gene, specifically c.708T > G, in a Han family affected by HAE. Our observations indicate that this variant leads to an increase in the accumulation of C1-INH within the endoplasmic reticulum (ER), resulting in the upregulation of GRP75 protein expression. This cascade of events resulted in Ca2+ overload, disruption of mitochondrial structure and function, and eventually triggered apoptosis. Using siRNA to knock down GRP75 mitigates cellular calcium overload and mitochondrial damage induced by the SERPING1 mutation. CONCLUSION: Based on our findings, we propose that the detection of intracellular Ca2+ concentration could serve as a valuable biomarker for predicting acute attacks of HAE in patients. This discovery holds significant implications for the development of more targeted and effective strategies in the management of HAE.


Subject(s)
Angioedemas, Hereditary , Complement C1 Inhibitor Protein , Humans , Angioedemas, Hereditary/genetics , Angioedemas, Hereditary/metabolism , Angioedemas, Hereditary/pathology , Complement C1 Inhibitor Protein/genetics , Complement C1 Inhibitor Protein/metabolism , Female , Male , Adult , Calcium/metabolism , Pedigree , Mutation/genetics , Middle Aged
2.
J Virol ; 98(9): e0079624, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39115433

ABSTRACT

Host cells have evolved an intricate regulatory network to fine tune the type-I interferon responses. However, the full picture of this regulatory network remains to be depicted. In this study, we found that knock out of zinc-finger CCHC-type containing protein 8 (ZCCHC8) impairs the replication of influenza A virus (IAV), Sendai virus (Sev), Japanese encephalitis virus (JEV), and vesicular stomatitis virus (VSV). Further investigation unveiled that ZCCHC8 suppresses the type-I interferon responses by targeting the interferon regulatory factor 3 (IRF3) signaling pathway. Mechanistically, ZCCHC8 associates with phosphorylated IRF3 and disrupts the interaction of IRF3 with the co-activator CREB-binding protein (CBP). Additionally, the direct binding of ZCCHC8 with the IFN-stimulated response element (ISRE) impairs the ISRE-binding of IRF3. Our study contributes to the comprehensive understanding for the negative regulatory network of the type-I interferon responses and provides valuable insights for the control of multiple viruses from a host-centric perspective.IMPORTANCEThe innate immune responses serve as the initial line of defense against invading pathogens and harmful substances. Negative regulation of the innate immune responses plays an essential role in avoiding auto-immune diseases and over-activated immune responses. Hence, the comprehensive understanding of the negative regulation network for innate immune responses could provide novel therapeutic insights for the control of viral infections and immune dysfunction. In this study, we report that ZCCHC8 negatively regulates the type-I interferon responses. We illustrate that ZCCHC8 impedes the IRF3-CBP association by interacting with phosphorylated IRF3 and competes with IRF3 for binding to ISRE. Our study demonstrates the role of ZCCHC8 in the replication of multiple RNA viruses and contributes to a deeper understanding of the negative regulation system for the type-I interferon responses.


Subject(s)
CREB-Binding Protein , Immunity, Innate , Interferon Regulatory Factor-3 , Interferon Type I , Sendai virus , Signal Transduction , Virus Replication , Interferon Regulatory Factor-3/metabolism , Interferon Type I/metabolism , Humans , HEK293 Cells , Sendai virus/physiology , Sendai virus/genetics , CREB-Binding Protein/metabolism , CREB-Binding Protein/genetics , RNA Viruses/physiology , RNA Viruses/immunology , RNA Viruses/genetics , Animals , A549 Cells , Influenza A virus/physiology , Influenza A virus/immunology , Phosphorylation , Host-Pathogen Interactions , Vesiculovirus/physiology , Encephalitis Virus, Japanese/physiology , Encephalitis Virus, Japanese/immunology
3.
Adv Sci (Weinh) ; : e2308968, 2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39207058

ABSTRACT

Pathological myopia (PM) is one of the leading causes of blindness, especially in Asia. To identify the genetic risk factors of PM, a two-stage genome-wide association study (GWAS) and replication analysis in East Asian populations is conducted. The analysis identified LILRB2 in 19q13.42 as a new candidate locus for PM. The increased protein expression of LILRB2/Pirb (mouse orthologous protein) in PM patients and myopia mouse models is validated. It is further revealed that the increase in LILRB2/Pirb promoted fatty acid synthesis and lipid accumulation, leading to the destruction of choroidal function and the development of PM. This study revealed the association between LILRB2 and PM, uncovering the molecular mechanism of lipid metabolism disorders leading to the pathogenesis of PM due to LILRB2 upregulation.

4.
Sci China Life Sci ; 67(9): 1941-1956, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38874710

ABSTRACT

High myopia (HM) is the primary cause of blindness, with the microstructural organization and composition of collagenous fibers in the cornea and sclera playing a crucial role in the biomechanical behavior of these tissues. In a previously reported myopic linkage region, MYP5 (17q21-22), a potential candidate gene, LRRC46 (c.C235T, p.Q79X), was identified in a large Han Chinese pedigree. LRRC46 is expressed in various eye tissues in humans and mice, including the retina, cornea, and sclera. In subsequent cell experiments, the mutation (c.C235T) decreased the expression of LRRC46 protein in human corneal epithelial cells (HCE-T). Further investigation revealed that Lrrc46-/- mice (KO) exhibited a classical myopia phenotype. The thickness of the cornea and sclera in KO mice became thinner and more pronounced with age, the activity of limbal stem cells decreased, and microstructural changes were observed in the fibroblasts of the sclera and cornea. We performed RNA-seq on scleral and corneal tissues of KO and normal control wild-type (WT) mice, which indicated a significant downregulation of the collagen synthesis-related pathway (extracellular matrix, ECM) in KO mice. Subsequent in vitro studies further indicated that LRRC46, a member of the important LRR protein family, primarily affected the formation of collagens. This study suggested that LRRC46 is a novel candidate gene for HM, influencing collagen protein VIII (Col8a1) formation in the eye and gradually altering the biomechanical structure of the cornea and sclera, thereby promoting the occurrence and development of HM.


Subject(s)
Mice, Knockout , Myopia , Sclera , Animals , Humans , Mice , Myopia/genetics , Myopia/metabolism , Sclera/metabolism , Cornea/metabolism , Cornea/pathology , Male , Collagen/metabolism , Collagen/genetics , Mutation
5.
J Environ Manage ; 363: 121309, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38848638

ABSTRACT

Multiple uncertainties such as water quality processes, streamflow randomness affected by climate change, indicators' interrelation, and socio-economic development have brought significant risks in managing water quantity and quality (WQQ) for river basins. This research developed an integrated simulation-optimization modeling approach (ISMA) to tackle multiple uncertainties simultaneously. This approach combined water quality analysis simulation programming, Markov-Chain, generalized likelihood uncertainty estimation, and interval two-stage left-hand-side chance-constrained joint-probabilistic programming into an integration nonlinear modeling framework. A case study of multiple water intake projects in the Downstream and Delta of Dongjiang River Basin was used to demonstrate the proposed model. Results reveal that ISMA helps predict the trend of water quality changes and quantitatively analyze the interaction between WQQ. As the joint probability level increases, under strict water quality scenario system benefits would increase [3.23, 5.90] × 109 Yuan, comprehensive water scarcity based on quantity and quality would decrease [782.24, 945.82] × 106 m3, with an increase in water allocation and a decrease in pollutant generation. Compared to the deterministic and water quantity model, it allocates water efficiently and quantifies more economic losses and water scarcity. Therefore, this research has significant implications for improving water quality in basins, balancing the benefits and risks of water quality violations, and stabilizing socio-economic development.


Subject(s)
Rivers , Water Quality , Uncertainty , Water Supply , Models, Theoretical , Climate Change
6.
Eur J Med Res ; 29(1): 271, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38711117

ABSTRACT

Dexmedetomidine (Dex) has been used in surgery to improve patients' postoperative cognitive function. However, the role of Dex in stress-induced anxiety-like behaviors and cognitive impairment is still unclear. In this study, we tested the role of Dex in anxiety-like behavior and cognitive impairment induced by acute restrictive stress and analyzed the alterations of the intestinal flora to explore the possible mechanism. Behavioral and cognitive tests, including open field test, elevated plus-maze test, novel object recognition test, and Barnes maze test, were performed. Intestinal gut Microbe 16S rRNA sequencing was analyzed. We found that intraperitoneal injection of Dex significantly improved acute restrictive stress-induced anxiety-like behavior, recognition, and memory impairment. After habituation in the environment, mice (male, 8 weeks, 18-23 g) were randomly divided into a control group (control, N = 10), dexmedetomidine group (Dex, N = 10), AS with normal saline group (AS + NS, N = 10) and AS with dexmedetomidine group (AS + Dex, N = 10). By the analysis of intestinal flora, we found that acute stress caused intestinal flora disorder in mice. Dex intervention changed the composition of the intestinal flora of acute stress mice, stabilized the ecology of the intestinal flora, and significantly increased the levels of Blautia (A genus of anaerobic bacteria) and Coprobacillus. These findings suggest that Dex attenuates acute stress-impaired learning and memory in mice by maintaining the homeostasis of intestinal flora.


Subject(s)
Dexmedetomidine , Gastrointestinal Microbiome , Homeostasis , Stress, Psychological , Animals , Dexmedetomidine/pharmacology , Gastrointestinal Microbiome/drug effects , Mice , Male , Homeostasis/drug effects , Stress, Psychological/complications , Stress, Psychological/drug therapy , Memory/drug effects , Memory Disorders/drug therapy , Maze Learning/drug effects , Anxiety/drug therapy
7.
Biomed Pharmacother ; 175: 116682, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38703507

ABSTRACT

The interaction between endoplasmic reticulum (ER) and mitochondria has been shown to play a key role in hepatic steatosis during chronic obesity. ß-nicotinamide mononucleotide (NMN) has been reported to regulate obesity, however, its molecular mechanism at the subcellular level remains unclear. Here, NMN improved liver steatosis and insulin resistance in chronic high-fat diet (HFD) mice. RNA-seq showed that compared with the liver of HFD mice, NMN intervention enhanced fat digestion and absorption and stimulated the cholesterol metabolism signaling pathways, while impaired insulin resistance and the fatty acid biosynthesis signaling pathways. Mechanistically, NMN ameliorated mitochondrial dysfunction and ER oxidative stress in the liver of HFD mice by increasing hepatic nicotinamide adenine dinucleotide (NAD+) (P < 0.01) levels. This effect increased the contact sites (mitochondria-associated membranes [MAMs]) between ER and mitochondria, thereby promoting intracellular ATP (P < 0.05) production and mitigating lipid metabolic disturbances in the liver of HFD mice. Taken together, this study provided a theoretical basis for restoring metabolic dynamic equilibrium in the liver of HFD mice by increasing MAMs via the nutritional strategy of NMN supplementation.


Subject(s)
Diet, High-Fat , Endoplasmic Reticulum , Fatty Liver , Insulin Resistance , Liver , Mice, Inbred C57BL , Nicotinamide Mononucleotide , Animals , Insulin Resistance/physiology , Diet, High-Fat/adverse effects , Endoplasmic Reticulum/metabolism , Male , Mice , Liver/metabolism , Liver/pathology , Liver/drug effects , Nicotinamide Mononucleotide/pharmacology , Fatty Liver/metabolism , Lipid Metabolism/drug effects , Mitochondria/metabolism , Mitochondria/drug effects , Oxidative Stress/drug effects , Mitochondria, Liver/metabolism , Mitochondria, Liver/drug effects , Endoplasmic Reticulum Stress/drug effects , Signal Transduction
8.
BMC Med Imaging ; 24(1): 126, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38807064

ABSTRACT

BACKGROUND: Automated Breast Ultrasound (AB US) has shown good application value and prospects in breast disease screening and diagnosis. The aim of the study was to explore the ability of AB US to detect and diagnose mammographically Breast Imaging Reporting and Data System (BI-RADS) category 4 microcalcifications. METHODS: 575 pathologically confirmed mammographically BI-RADS category 4 microcalcifications from January 2017 to June 2021 were included. All patients also completed AB US examinations. Based on the final pathological results, analyzed and summarized the AB US image features, and compared the evaluation results with mammography, to explore the detection and diagnostic ability of AB US for these suspicious microcalcifications. RESULTS: 250 were finally confirmed as malignant and 325 were benign. Mammographic findings including microcalcifications morphology (61/80 with amorphous, coarse heterogeneous and fine pleomorphic, 13/14 with fine-linear or branching), calcification distribution (189/346 with grouped, 40/67 with linear and segmental), associated features (70/96 with asymmetric shadow), higher BI-RADS category with 4B (88/120) and 4 C (73/38) showed higher incidence in malignant lesions, and were the independent factors associated with malignant microcalcifications. 477 (477/575, 83.0%) microcalcifications were detected by AB US, including 223 malignant and 254 benign, with a significantly higher detection rate for malignant lesions (x2 = 12.20, P < 0.001). Logistic regression analysis showed microcalcifications with architectural distortion (odds ratio [OR] = 0.30, P = 0.014), with amorphous, coarse heterogeneous and fine pleomorphic morphology (OR = 3.15, P = 0.037), grouped (OR = 1.90, P = 0.017), liner and segmental distribution (OR = 8.93, P = 0.004) were the independent factors which could affect the detectability of AB US for microcalcifications. In AB US, malignant calcification was more frequent in a mass (104/154) or intraductal (20/32), and with ductal changes (30/41) or architectural distortion (58/68), especially with the both (12/12). BI-RADS category results also showed that AB US had higher sensitivity to malignant calcification than mammography (64.8% vs. 46.8%). CONCLUSIONS: AB US has good detectability for mammographically BI-RADS category 4 microcalcifications, especially for malignant lesions. Malignant calcification is more common in a mass and intraductal in AB US, and tend to associated with architectural distortion or duct changes. Also, AB US has higher sensitivity than mammography to malignant microcalcification, which is expected to become an effective supplementary examination method for breast microcalcifications, especially in dense breasts.


Subject(s)
Breast Neoplasms , Calcinosis , Ultrasonography, Mammary , Humans , Calcinosis/diagnostic imaging , Female , Retrospective Studies , Middle Aged , Ultrasonography, Mammary/methods , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/pathology , Adult , Aged , Mammography/methods , Aged, 80 and over
9.
Apoptosis ; 29(7-8): 1211-1231, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38622369

ABSTRACT

The high heterogeneity of breast cancer (BC) caused by pathogenic gene mutations poses a challenge to immunotherapy, but the underlying mechanism remains unknown. The difference in the infiltration of M1 macrophages induced by TP53 mutations has a significant impact on BC immunotherapy. The aim of this study was to develop a TP53-related M1 macrophage infiltration molecular typing risk signature in BC and evaluate the biological functions of the key gene to find new immunotherapy biomarkers. Weighted correlation network analysis (WGCNA) and negative matrix factorization (NMF) were used for distinguishing BC subtypes. The signature and the nomogram were both constructed and evaluated. Biological functions of the novel signature gene SLC2A6 were confirmed through in vitro and in vivo experiments. RNA-Sequencing and protein profiling were used for detecting the possible mechanism of SLC2A6. The results suggested that four BC subtypes were distinguished by TP53-related genes that affect M1 macrophage infiltration. The signature constructed by molecular typing characteristics could evaluate BC's clinical features and tumor microenvironment. The nomogram could accurately predict the prognosis. The signature gene SLC2A6 was found to have an abnormally low expression in tumor tissues. Overexpression of SLC2A6 could inhibit proliferation, promote mitochondrial damage, and result in apoptosis of tumor cells. The HSP70 family member protein HSPA6 could bind with SLC2A6 and increase with the increased expression of SLC2A6. In summary, the risk signature provides a reference for BC risk assessment, and the signature gene SLC2A6 could act as a tumor suppressor in BC.


Subject(s)
Breast Neoplasms , Gene Expression Regulation, Neoplastic , Macrophages , Tumor Suppressor Protein p53 , Humans , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Breast Neoplasms/immunology , Female , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Macrophages/metabolism , Macrophages/immunology , Tumor Microenvironment/immunology , Tumor Microenvironment/genetics , Animals , Prognosis , Protective Factors , Mice , Cell Line, Tumor , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Apoptosis/genetics , Nomograms , Cell Proliferation/genetics
10.
Environ Sci Pollut Res Int ; 31(19): 28241-28252, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38538997

ABSTRACT

In this study, boron-doped porous carbon materials (BCs) with high surface areas were synthesized employing coffee grounds as carbon source and sodium bicarbonate and boric acid as precursors; afterward, nanoscale zero-valent iron (nZVI) and BCs composites (denoted as nZVI@BCs) were further prepared through reduction of FeSO4 by NaBH4 along with stirring. The performance of the nZVI@BCs for activating persulfate (PS) was evaluated for the degradation of bisphenol A (BPA). In comparison with nZVI@Cs/PS, nZVI@BCs/PS could greatly promote the degradation and mineralization of BPA via both radical and non-radical pathways. On the one hand, electron spin resonance and radical quenching studies represented that •OH, SO4•-, and O2•- were mainly produced in the nZVI@BCs/PS system for BPA degradation. On the other hand, the open circuit voltages of nZVI@BCs and nZVI@Cs in different systems indicated that non-radical pathway still existed in our system. PS could grab the unstable unpaired electron on nZVI@BCs to form a carbon material surface-confined complex ([nZVI@BCs]*) with a high redox potential, then accelerate BPA removal efficiency via direct electron transfer. Furthermore, the performances and mechanisms for BPA degradation were examined by PS activation with nZVI@BC composites at various conditions including dosages of nZVI@BCs, BPA and PS, initially pH value, temperature, common anions, and humid acid. Therefore, this study provides a novel insight for development of high-performance carbon catalysts toward environmental remediation.


Subject(s)
Benzhydryl Compounds , Boron , Carbon , Iron , Phenols , Benzhydryl Compounds/chemistry , Iron/chemistry , Boron/chemistry , Carbon/chemistry , Phenols/chemistry , Catalysis , Porosity
11.
Circ Res ; 134(5): 505-525, 2024 03.
Article in English | MEDLINE | ID: mdl-38422177

ABSTRACT

BACKGROUND: Chronic overconsumption of lipids followed by their excessive accumulation in the heart leads to cardiomyopathy. The cause of lipid-induced cardiomyopathy involves a pivotal role for the proton-pump vacuolar-type H+-ATPase (v-ATPase), which acidifies endosomes, and for lipid-transporter CD36, which is stored in acidified endosomes. During lipid overexposure, an increased influx of lipids into cardiomyocytes is sensed by v-ATPase, which then disassembles, causing endosomal de-acidification and expulsion of stored CD36 from the endosomes toward the sarcolemma. Once at the sarcolemma, CD36 not only increases lipid uptake but also interacts with inflammatory receptor TLR4 (Toll-like receptor 4), together resulting in lipid-induced insulin resistance, inflammation, fibrosis, and cardiac dysfunction. Strategies inducing v-ATPase reassembly, that is, to achieve CD36 reinternalization, may correct these maladaptive alterations. For this, we used NAD+ (nicotinamide adenine dinucleotide)-precursor nicotinamide mononucleotide (NMN), inducing v-ATPase reassembly by stimulating glycolytic enzymes to bind to v-ATPase. METHODS: Rats/mice on cardiomyopathy-inducing high-fat diets were supplemented with NMN and for comparison with a cocktail of lysine/leucine/arginine (mTORC1 [mechanistic target of rapamycin complex 1]-mediated v-ATPase reassembly). We used the following methods: RNA sequencing, mRNA/protein expression analysis, immunofluorescence microscopy, (co)immunoprecipitation/proximity ligation assay (v-ATPase assembly), myocellular uptake of [3H]chloroquine (endosomal pH), and [14C]palmitate, targeted lipidomics, and echocardiography. To confirm the involvement of v-ATPase in the beneficial effects of both supplementations, mTORC1/v-ATPase inhibitors (rapamycin/bafilomycin A1) were administered. Additionally, 2 heart-specific v-ATPase-knockout mouse models (subunits V1G1/V0d2) were subjected to these measurements. Mechanisms were confirmed in pharmacologically/genetically manipulated cardiomyocyte models of lipid overload. RESULTS: NMN successfully preserved endosomal acidification during myocardial lipid overload by maintaining v-ATPase activity and subsequently prevented CD36-mediated lipid accumulation, CD36-TLR4 interaction toward inflammation, fibrosis, cardiac dysfunction, and whole-body insulin resistance. Lipidomics revealed C18:1-enriched diacylglycerols as lipid class prominently increased by high-fat diet and subsequently reversed/preserved by lysine/leucine/arginine/NMN treatment. Studies with mTORC1/v-ATPase inhibitors and heart-specific v-ATPase-knockout mice further confirmed the pivotal roles of v-ATPase in these beneficial actions. CONCLUSION: NMN preserves heart function during lipid overload by preventing v-ATPase disassembly.


Subject(s)
Cardiomyopathies , Insulin Resistance , Animals , Mice , Rats , Adenosine Triphosphatases , Arginine , Cardiomyopathies/chemically induced , Cardiomyopathies/prevention & control , CD36 Antigens/genetics , Fibrosis , Inflammation , Leucine , Lipids , Lysine , Mechanistic Target of Rapamycin Complex 1 , Myocytes, Cardiac , Nicotinamide Mononucleotide , Toll-Like Receptor 4/genetics
12.
Food Chem Toxicol ; 185: 114462, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38272172

ABSTRACT

Zearalenone (ZEN, a widespread fusarium mycotoxin) causes evoked oxidative stress in reproductive system, but little is known about whether this is involved in ferroptosis. Melatonin, a well-known antioxidant, has demonstrated unique anti-antioxidant properties in several studies. Here, this study was aimed to investigate whether ZEN-induced oxidative stress in female pig's reproductive system was involved in ferroptosis, and melatonin was then supplemented to protect against ZEN-induced abnormalities in vitro cell models [human granulosa cell (KGN) and mouse endometrial stromal cell (mEC)] and in vivo mouse model. According to the results from female pig's reproductive organs, ZEN-induced abnormalities in vulvar swelling, inflammatory invasion and pathological mitochondria, were closely linked with evoked oxidative stress. Using RNA-seq analysis, we further revealed that ZEN-induced reproductive toxicity was due to activated ferroptosis. Mechanistically, by using in vitro cell models (KGN and mEC) and in vivo mouse model, we observed that ZEN exposure resulted in oxidative stress and ferroptosis in a glutathione-dependent manner. Notably, these ZEN-induced abnormalities above were alleviated by melatonin supplementation through enhanced productions of glutathione peroxidase 4 and glutathione. Herein, the present results suggest that potential strategies to improve glutathione production protect against ZEN-induced reproductive toxicity, including oxidative stress and ferroptosis.


Subject(s)
Ferroptosis , Melatonin , Zearalenone , Female , Humans , Animals , Mice , Zearalenone/toxicity , Melatonin/pharmacology , Oxidative Stress , Glutathione/metabolism , Genitalia, Female
13.
Microvasc Res ; 151: 104623, 2024 01.
Article in English | MEDLINE | ID: mdl-37924941

ABSTRACT

OBJECTIVE: Type B aortic dissection (TBAD) and intramural aortic hematoma (IMH) are common manifestations of Acute Aortic Syndrome (AAS), exhibiting overlapping clinical features. The timely and accurate diagnosis and differentiation between TBAD and IMH are critical for appropriate management. Tumorigenicity 2 (sST2) and D-dimer have been shown to elevate levels in both TBAD and IMH, making them valuable as "rule-out" markers. Hence, we aimed to assess the diagnostic utility of sST2 and D-dimer in distinguishing TBAD from IMH. METHODS: In this retrospective study, we analyzed serum levels of sST2 and D-dimer in 182 AAS patients, comprising 90 TBAD cases, 92 IMH cases, and 90 non-AAS cases. Serial measurements were taken at 1 h, 6 h, 12 h, 24 h, and 72 h post-admission. Comparative analyses were conducted between TBAD and non-AAS cases, IMH and non-AAS cases, and TBAD and IMH cases. Receiver operating characteristic (ROC) curve analysis was performed to evaluate the diagnostic accuracy of sST2 and D-dimer in identifying TBAD or IMH cases. RESULTS: Both TBAD and IMH patients displayed elevated levels of sST2 and D-dimer compared to non-AAS cases. Notably, sST2 levels were significantly higher in TBAD patients than in IMH patients, whereas D-dimer levels exhibited moderate differences. TBAD patients tended to exhibit elevated levels of either sST2 or D-dimer, with a modest correlation between the two (Pearson correlation coefficient = 0.3614). In contrast, IMH patients showed elevations in both markers, with a positive correlation between them (Pearson correlation coefficient = 0.6814). The ROC analysis revealed that both sST2 (AUC, 0.657; 95 % CI, 0.552-0.753; cutoff value, 27.54 ng/ml) and D-dimer (AUC, 0.695; 95 % CI, 0.591-0.787, cutoff value, 1.215 ng/ml) demonstrated favorable diagnostic performance for TBAD. sST2 exhibited a sensitivity of 80.92 % and a specificity of 75.00 %, while D-dimer showed a sensitivity of 80.92 % and a specificity of 75.00 %. For the diagnosis of IMH, the combined assessment of sST2 and D-dimer (AUC, 0.674; 95 % CI, 0.599-0.768; sensitivity, 69.20 %; specificity, 80.00 %) proved effective. CONCLUSIONS: Our results indicate that both sST2 and D-dimer show diagnostic potential for TBAD. Elevated levels of either serve as an indicator of TBAD onset. However, concurrent elevation of both markers seems to be indicative of IMH. The combination of increased sST2 and D-dimer levels demonstrates strong diagnostic performance in identifying IMH cases.


Subject(s)
Aortic Dissection , Interleukin-1 Receptor-Like 1 Protein , Humans , Retrospective Studies , Aortic Dissection/diagnosis , Hematoma/diagnosis
14.
J Hazard Mater ; 465: 133247, 2024 03 05.
Article in English | MEDLINE | ID: mdl-38141293

ABSTRACT

Antibiotics have attracted global attention because of their potential ecological and health risks. The emission, multimedia fate and risk of 18 selected antibiotics in the entire Yangtze River basin were evaluated by using a level Ⅳ fugacity model. High antibiotic emissions were found in the middle and lower reaches of the Yangtze River basin. The total antibiotic emissions in the Yangtze River basin exceeded 1600 tons per year between 2013 and 2021. The spatial distribution of antibiotics concentration was the upper Yangtze River > middle Yangtze River > lower Yangtze River, which is positively correlated with animal husbandry size in the basin. Temperature and precipitation increases may decrease the antibiotic concentrations in the environment. Transfer fluxes showed that source emission inputs, advection processes, and degradation fluxes contributed more to the total input and output. High ecological risks in the water environment were found in 2018, 2019, 2020, and 2021. The comprehensive health risk assessment through drinking water and fish consumption routes showed that a small part of the Yangtze River basin is at medium risk, and children have a relatively high degree of health risk. This study provides a scientific basis for the pollution control of antibiotics at the basin scale.


Subject(s)
Rivers , Water Pollutants, Chemical , Animals , Child , Humans , Anti-Bacterial Agents/analysis , Multimedia , Environmental Monitoring , China , Risk Assessment , Water Pollutants, Chemical/analysis
15.
Reprod Toxicol ; 124: 108530, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38159578

ABSTRACT

The reproductive system is a primary target organ for zearalenone (ZEN, a widespread fusarium mycotoxin) to exert its toxic effects, including decreased antioxidant capacity and aggravated inflammatory response. These ZEN-induced reproductive abnormalities are partially caused by the declining levels of nicotinamide adenine dinucleotide (NAD+), which results in an imbalance in lipid/glucose metabolism. Accordingly, the present study aimed to investigate whether supplements of nicotinamide mononucleotide (NMN, a NAD+ precursor) in female mice could protect against ZEN-induced reproductive toxicity. In this study, thirty female mice were randomly divided into three groups that were intragastrically administered with i) 0.5% DMSO (the Ctrl group), ii) 3 mg/(kg bw.d) ZEN (the ZEN group), or iii) ZEN + 500 mg/(kg bw.d) NMN (the ZEN/NMN group) for two weeks. The results revealed that, compared with the Ctrl group, animals exposed to ZEN exhibited reproductive toxicity, such as decreased antioxidant capacity and aggravated inflammatory response in reproductive tissues. These effects were strongly correlated with lower activities in key glycolytic enzymes (e.g., ALDOA and PGK), but increased expressions in key lipid-synthesis genes (e.g., LPIN1 and ATGL). These changes contribute to lipid accumulation, specifically for diacylglycerols (DAGs). Furthermore, these ZEN-induced changes were linked with disturbed NAD+ synthesis/degradation, and subsequently decreased NAD+ levels. Notably, NMN supplements in mice protected against these ZEN-induced reproductive abnormalities by boosting NAD+ levels. Herein, the present findings demonstrate that potential strategies to enhance NAD+ levels can protect against ZEN-induced reproductive toxicity.


Subject(s)
Antioxidants , Zearalenone , Mice , Female , Animals , Antioxidants/pharmacology , Antioxidants/metabolism , Zearalenone/toxicity , NAD/metabolism , Lipid Metabolism , Inflammation/chemically induced , Inflammation/metabolism , Genitalia/metabolism , Glycolysis , Lipids
16.
Nat Commun ; 14(1): 8362, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38102126

ABSTRACT

Neurogenins are proneural transcription factors required to specify neuronal identity. Their overexpression in human pluripotent stem cells rapidly produces cortical-like neurons with spiking activity and, because of this, they have been widely adopted for human neuron disease models. However, we do not fully understand the key downstream regulatory effectors responsible for driving neural differentiation. Here, using inducible expression of NEUROG1 and NEUROG2, we identify transcription factors (TFs) required for directed neuronal differentiation by combining expression and chromatin accessibility analyses with a pooled in vitro CRISPR-Cas9 screen targeting all ~1900 TFs in the human genome. The loss of one of these essential TFs (ZBTB18) yields few MAP2-positive neurons. Differentiated ZBTB18-null cells have radically altered gene expression, leading to cytoskeletal defects and stunted neurites and spines. In addition to identifying key downstream TFs for neuronal differentiation, our work develops an integrative multi-omics and TFome-wide perturbation platform to rapidly characterize essential TFs for the differentiation of any human cell type.


Subject(s)
Pluripotent Stem Cells , Transcription Factors , Humans , Transcription Factors/genetics , Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/metabolism , Neurogenesis/genetics , Neurons/metabolism , Cell Differentiation/genetics , Pluripotent Stem Cells/metabolism
17.
J Med Virol ; 95(10): e29171, 2023 10.
Article in English | MEDLINE | ID: mdl-37830751

ABSTRACT

Influenza A virus (IAV) relies on intricate and highly coordinated associations with host factors for efficient replication and transmission. Characterization of such factors holds great significance for development of anti-IAV drugs. Our study identified protein arginine methyltransferase 5 (PRMT5) as a novel host factor indispensable for IAV replication. Silencing PRMT5 resulted in drastic repression of IAV replication. Our findings revealed that PRMT5 interacts with each protein component of viral ribonucleoproteins (vRNPs) and promotes arginine symmetric dimethylation of polymerase basic 2 (PB2). Overexpression of PRMT5 enhanced viral polymerase activity in a dose-dependent manner, emphasizing its role in genome transcription and replication of IAV. Moreover, analysis of PB2 protein sequences across various subtypes of IAVs demonstrated the high conservation of potential RG motifs recognized by PRMT5. Overall, our study suggests that PRMT5 supports IAV replication by facilitating viral polymerase activity by interacting with PB2 and promoting its arginine symmetric dimethylation. This study deepens our understanding of how IAV manipulates host factors to facilitate its replication and highlights the great potential of PRMT5 to serve as an anti-IAV therapeutic target.


Subject(s)
Influenza A virus , Protein-Arginine N-Methyltransferases , Humans , Arginine , Influenza A virus/genetics , Protein-Arginine N-Methyltransferases/genetics , Protein-Arginine N-Methyltransferases/metabolism , Ribonucleoproteins/metabolism , Virus Replication
18.
Am J Emerg Med ; 74: 140-145, 2023 12.
Article in English | MEDLINE | ID: mdl-37837822

ABSTRACT

BACKGROUND: Benign paroxysmal positional vertigo (BPPV) is the most prevalent form of peripheral vertigo, with vascular lesions being one of its suspected causes. The older adults are particularly vulnerable to BPPV. Cerebral small vessel disease (CSVD), on the other hand, is a clinical condition that results from damage of cerebral small vessels. Vascular involvement resulting from age-related risk factors and proinflammatory state may act as the underlying factor linking both BPPV and CSVD. AIM: The objective of this study is to explore the potential correlation between BPPV and CSVD by examining whether individuals aged 50 and older with BPPV exhibit a greater burden of CSVD. MATERIALS AND METHODS: This retrospective study included patients aged 50 years and older who had been diagnosed with BPPV. A control group consisting of patients diagnosed with idiopathic facial neuritis (IFN) during the same time period was also included. The burden of cerebral white matter hyperintensities (WMHs) was evaluated using the Fazekas scale. An ordinal regression analysis was conducted to investigate the potential correlation between BPPV and WMHs. RESULTS: The study included a total of 101 patients diagnosed with BPPV and 116 patients with IFN. Patients with BPPV were found to be significantly more likely (OR = 2.37, 95% CI 1.40-4.03, p = 0.001) to have a higher Fazekas score compared to the control group. Brain infarctions, hypertension, and age were all identified as significant predictors of white matter hyperplasia on MRI, with OR of 9.9 (95% CI 4.21-24.84, P<0.001), 2.86 (95% CI 1.67-5.0, P<0.001), and 1.18 (95% CI 1.13-1.22, P<0.001) respectively. CONCLUSION: Our findings suggest that vascular impairment caused by age-related risk factors and proinflammatory status may be contributing factors to the development of BPPV in individuals aged 50 and above, as we observed a correlation between the suffering of BPPV and the severity of WMHs.


Subject(s)
Benign Paroxysmal Positional Vertigo , Cerebral Small Vessel Diseases , Humans , Middle Aged , Aged , Benign Paroxysmal Positional Vertigo/diagnosis , Benign Paroxysmal Positional Vertigo/etiology , Retrospective Studies , Risk Factors , Age Factors , Cerebral Small Vessel Diseases/complications , Cerebral Small Vessel Diseases/diagnostic imaging
19.
EBioMedicine ; 95: 104738, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37549632

ABSTRACT

BACKGROUND: Genomic alterations in DNA damage response (DDR) genes are common in metastatic castration-resistant prostate cancer (mCRPC). Understanding how these genomic events impact prognosis and/or treatment response is vital for optimising clinical outcomes. METHODS: Targeted sequencing was performed on 407 plasma samples from 375 men with mCRPC. Using the CLIA-certified PredicineCARE™ cell-free DNA (cfDNA) assay, pathogenic alterations in 152 key genes (including 27 DDR-related genes) were assessed, as was the presence and mechanisms of biallelic loss in BRCA2. FINDINGS: At least one DDR alteration was present in 34.5% (129/375) of patients (including monoallelic alterations). The most frequently altered DDR genes were BRCA2 (19%), ATM (13%), FANCA (5%), CHEK2 (5%) and BRCA1 (3%). Patients with BRCA alterations, especially BRCA2, had significantly worse progression-free survival (PFS) (Hazard ratio (HR) 3.3 [95% CI 1.9-6.0]; Cox regression p < 0.001), overall survival (HR 2.2 [95% CI 1.1-4.5]; Cox regression p = 0.02) and PSA response rates to androgen receptor (AR) pathway inhibitors (32% vs 60%, chi-square p = 0.02). BRCA-deficient tumours were also enriched for alterations within multiple genes including in the AR and PI3K pathways. Zygosity of BRCA2 alterations had no discernible impact on clinical outcomes, with similarly poor PFS for monoallelic vs biallelic loss (median 3.9 months vs 3.4 months vs copy neutral 9.8 months). INTERPRETATION: These data emphasise that the BRCA genes, in particular BRCA2, are key prognostic biomarkers in mCRPC. The clinical utility of BRCA2 as a marker of poor outcomes may, at least in cfDNA assays, be independent of the zygosity state detected. Enrichment of actionable genomic alterations in cfDNA from BRCA-deficient mCRPC may support rational co-targeting strategies in future clinical trials. FUNDING: Several funding sources have supported this study. A full list is provided in the Acknowledgments. No funding was received from Predicine, Inc. during the conduct of the study.


Subject(s)
Cell-Free Nucleic Acids , Prostatic Neoplasms, Castration-Resistant , Humans , Male , Androgen Receptor Antagonists , Biomarkers, Tumor/genetics , Genomics , Phenotype , Phosphatidylinositol 3-Kinases/genetics , Prognosis , Prostatic Neoplasms, Castration-Resistant/diagnosis , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/drug therapy
20.
Genet Test Mol Biomarkers ; 27(8): 258-266, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37643323

ABSTRACT

Background: Retinitis pigmentosa (RP) is a complex inherited and progressive degenerative retinal disease. The eyes shut homolog (EYS) is frequently associated with RP is surprisingly high. Exploring the function of EYS is quite difficult due to the unique gene size and species specificity. Gene therapy may provide a breakthrough to treat this disease. Therefore, exploring and clarifying pathogenic mutations of EYS-associated RP has important guiding significance for clinical treatment. Methods: Clinical and molecular genetic data for EYS-associated RP were retrospectively analyzed. Sanger sequencing was applied to identify novel mutations in these patients. Candidate pathogenic variants were subsequently evaluated using bioinformatic tools. Results: A novel pair of compound heterozygous mutations was identified: a novel stop-gain mutation c.2439C>A (p.C813fsX) and a frameshift deletion mutation c.6714delT (p. P2238fsX) of the EYS gene in the RP family. Both of these mutations were rare or absent in the 1000 Genomes Project, dbSNP, and Genome Aggregation Database (gnomAD). These two mutations would result in a lack of multiple functionally important epidermal growth factor-like and Laminin G-like coding regions in EYS. Conclusions: A novel compound heterozygote of the EYS gene in a Chinese family with an autosomal inheritance pattern of RP was identified. Identifying more pathogenic mutations and expanding the mutation spectrum of the EYS gene will contribute to a more comprehensive understanding of the molecular pathogenesis of RP disease that could be gained in the future. It also could provide an important basis for the diagnosis, clinical management, and genetic counseling of the disease.


Subject(s)
East Asian People , Retinitis Pigmentosa , Humans , Retrospective Studies , Mutation/genetics , Retinitis Pigmentosa/genetics , Frameshift Mutation , Eye Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL