Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem Lett ; 14(29): 6532-6541, 2023 Jul 27.
Article in English | MEDLINE | ID: mdl-37450690

ABSTRACT

Organic solar cells (OSCs) have attracted lots of attention owing to their low cost, lightweight, and flexibility properties. Nowadays, the performance of OSCs is continuously improving with the development of active layer materials. However, the traditional hole transport layer (HTL) material Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) presents insufficient conductivity and rapid degradation, which decreases the efficiency and stability of OSCs. To conquer the challenge, the two-dimensional (2D) graphitic carbon nitride (g-C3N4) nanomaterials incorporated into the PEDOT:PSS as hybrid HTL are reported. The addition of g-C3N4 into PEDOT:PSS enables the thickness of the HTL to decrease for enhancing the transmittance of the film and increase the conductivity of PEDOT:PSS. Thus, the device exhibts improved charge transport and suppressed carrier recombination, leading to the increase in short-circuit current density and power conversion efficiency of the devices. This work demonstrates that the incorporation of 2D g-C3N4 into PEDOT:PSS for D18:Y6 and PM6:L8-BO-based OSCs can significantly improve the device efficiency to 17.48% and 18.47% with the enhancement of 7.04% and 8.46%, respectively.

2.
Phys Chem Chem Phys ; 24(18): 10877-10886, 2022 May 11.
Article in English | MEDLINE | ID: mdl-35451434

ABSTRACT

Metallic carbohydrazide perchlorates (M[(N2H3)2C = O](ClO4)2, M2+ = Mn2+, Fe2+, Co2+, Ni2+, Zn2+ and Cd2+, simplified as MCPs) are a series of energetic primary explosives, among which ZnCP and CdCP are already applied in civilian/military fields. The six MCPs possess similar structures but demonstrate different energetic performances in their decomposition, which are obviously determined by their different central metals. Here, we apply DFT and Car-Parrinello molecular dynamics (CPMD) to understand the electronic structures and decomposition pathways of the MCPs. Based on the results, the crystal MCPs with larger electronic band gaps show lower impact sensitivity. However, the friction sensitivity of MCPs is dominated by the strength of their intermolecular O⋯H interactions. In the CPMD simulations, we obtained a different conclusion from the traditional viewpoint, where the decomposition is spontaneous from the cleavage of M-N bonds. Indeed, there are two stages in the decomposition of the MCPs, based on our calculations: (I) nonspontaneous 3-step departure of the CHZ groups and (II) spontaneous exoergic decomposition pathways of the CHZ groups triggered by the transfer of O/H radicals. Our study provides a systematic study of the MCP family, which also affords a new route for understanding the relationship between the energetic properties and electronic structures of energetic metal complexes.

3.
Phys Rev E Stat Nonlin Soft Matter Phys ; 83(3 Pt 2): 036203, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21517571

ABSTRACT

Time-delay chaotic systems have some very interesting properties, and their parameter estimation has received increasing interest in the recent years. It is well known that parameter estimation of a chaotic system is a nonlinear, multivariable, and multimodal optimization problem for which global optimization techniques are required in order to avoid local minima. In this work, a seeker-optimization-algorithm (SOA)-based method is proposed to address this issue. In the SOA, search direction is based on the empirical gradients by evaluating the response to the position changes, and step length is based on uncertainty reasoning by using a simple fuzzy rule. The performance of the algorithm is evaluated on two typical test systems. Moreover, two state-of-the-art algorithms (i.e., particle swarm optimization and differential evolution) are also considered for comparison. The simulation results show that the proposed algorithm is better than or at least as good as the other two algorithms and can effectively solve the parameter estimation problem of time-delay chaotic systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...