Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; 36(11): e2310145, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38016424

ABSTRACT

Tactile sensory organs for sensing 3D force, such as human skin and fish lateral lines, are indispensable for organisms. With their sensory properties enhanced by layered structures, typical sensory organs can achieve excellent perception as well as protection under frequent mechanical contact. Here, inspired by these layered structures, a split-type magnetic soft tactile sensor with wireless 3D force sensing and a high accuracy (1.33%) fabricated by developing a centripetal magnetization arrangement and theoretical decoupling model is introduced. The 3D force decoupling capability enables it to achieve a perception close to that of human skin in multiple dimensions without complex calibration. Benefiting from the 3D force decoupling capability and split design with a long effective distance (>20 mm), several sensors are assembled in air and water to achieve delicate robotic operation and water flow-based navigation with an offset <1.03%, illustrating the extensive potential of magnetic tactile sensors in flexible electronics, human-machine interactions, and bionic robots.


Subject(s)
Mechanical Phenomena , Touch , Animals , Humans , Skin , Water , Magnetic Phenomena
2.
ACS Nano ; 16(11): 19271-19280, 2022 11 22.
Article in English | MEDLINE | ID: mdl-36227202

ABSTRACT

Tactile recognition is among the basic survival skills of human beings, and advances in tactile sensor technology have been adopted in various fields, bringing benefits such as outstanding performance in manipulating objects and general human-robot interactions. However, promoting enhanced perception of the existing tactile sensors is limited by their sensor array arrangement and wire-connected design. Here we present a wireless flexible magnetic tactile sensor (FMTS) consisting of a multidirection magnetized flexible film (perception module) and a contactless Hall sensor (signal receiving module). The flexible magnetic film is composed of NdFeB microparticles and soft silicone elastomer microparticles, and it transfers the unambiguous transduction of external force position and magnitude into magnetic signals. Benefiting from the specific magnetization arrangement and clustering algorithm, only one Hall sensor is needed in FMTS to perceive the magnitude and position of the contact spot simultaneously with super-resolution (2.1 mm average error) on a large area (3600 mm2), and the effective working distance is also greatly extended (∼30 mm), allowing for the full softness and adaptability to diverse conditions. We anticipate that this design will promote the development of soft tactile sensors and their integration into human-robot interaction and humanoid robot perception.


Subject(s)
Mechanical Phenomena , Touch , Humans , Touch/physiology , Magnetic Phenomena
SELECTION OF CITATIONS
SEARCH DETAIL
...