Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; 51(47): 18277-18283, 2022 Dec 06.
Article in English | MEDLINE | ID: mdl-36411978

ABSTRACT

Herein, sol-gel-synthesized α-Li2TiO3 was evaluated as a new promising anode material for lithium-ion batteries. The results show ultrastable release of discharge capacity within the range of 290-350 mA h g-1 in 400 cycles. Decent rate performances were also observed. A capacity of ca. 113 mA h g-1 was retained at a current density of 3 C. A 2 × 2 × 1 supercell of the lowest energy ordering structure was used in density functional theory simulations. The calculations show that in the intercalation process, Li+ preferentially enters the tetrahedral voids, leading to the activation of lithium-ion diffusion on the a-b plane with a minimal energy barrier of 0.06 eV (compared with 0.82 eV for the fully charged state). The activation of cation mobility at Li+ intercalation and insulator-conductor transition both contribute significantly to the ultrastability of the material. However, Li+ propagation along the c-axis is highly limited during the whole intercalation process. The enumeration of all the ordering structures on the tetrahedral sites shows two intermediate phases, α-Li2.25TiO3 and α-Li3.0TiO3, as observed from the formation energy convex hull.

2.
Phys Chem Chem Phys ; 23(2): 1750-1758, 2021 Jan 21.
Article in English | MEDLINE | ID: mdl-33427832

ABSTRACT

Molecular dynamics (MD) together with the first principles method (DFT) reveal that Na+ is capable of migrating three dimensionally in a Na2Mn2Si2O7 cathode material. Migration along the a-axis and c-axis have the same mechanism, that is, alternating between the Na1 and Na2 route with a similar local environment and distance. Long-distance hopping between two Na2 atoms or between Na1 and Na2 atoms is crucial for continuous migration along the b-axis. Also, the anti-site phenomenon is identified, and it facilitates the migration of the Na ions. Four intermediate phases are determined according to the formation energy curve and, as a result, the voltage profile is predicted accurately. The state of charge (SOC) dependency of the Na+ energy shows that the mobility of Na+ is highly inhibited in the fully discharged state. Upon the deintercalation of sodium ions, Na+ is activated immediately. A maximal DNa+ value of 3.6 × 10-9 cm2 s-1 and a low energy barrier of ca. 0.26 eV at the deintercalation level of x = 0.25 are observed. Because of the scarcity of Na+, DNa+ experiences a sharp decrease at the end of deintercalation. Despite the low level of Na+ mobility in the range of 0.25 < x < 1, Na2Mn2Si2O7 is still a potential cathode material for use in sodium ion batteries (SIBs).

SELECTION OF CITATIONS
SEARCH DETAIL