Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
2.
Exploration (Beijing) ; 3(3): 20220171, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37933384

ABSTRACT

Diffuse alveolar damage (DAD) triggers neutrophilic inflammation in damaged tissues of the lung, but little is known about the distinct roles of tissue structural cells in modulating the recruitment of neutrophils to damaged areas. Here, by combining single-cell and spatial transcriptomics, and using quantitative assays, we systematically analyze inflammatory cell states in a mouse model of DAD-induced neutrophilic inflammation after aerosolized intratracheal inoculation with ricin toxin. We show that homeostatic resident fibroblasts switch to a hyper-inflammatory state, and the subsequent occurrence of a CXCL1-CXCR2 chemokine axis between activated fibroblasts (AFib) as the signal sender and neutrophils as the signal receiver triggers further neutrophil recruitment. We also identify an anatomically localized inflamed niche (characterized by a close-knit spatial intercellular contact between recruited neutrophils and AFib) in peribronchial regions that facilitate the pulmonary inflammation outbreak. Our findings identify an intricate interplay between hyper-inflammatory fibroblasts and neutrophils and provide an overarching profile of dynamically changing inflammatory microenvironments during DAD progression.

3.
Infect Immun ; 90(6): e0001622, 2022 06 16.
Article in English | MEDLINE | ID: mdl-35587202

ABSTRACT

Coxiella burnetii, the causative agent of zoonotic Q fever, is characterized by replicating inside the lysosome-derived Coxiella-containing vacuole (CCV) in host cells. Some effector proteins secreted by C. burnetii have been reported to be involved in the manipulation of autophagy to facilitate the development of CCVs and bacterial replication. Here, we found that the Coxiella plasmid effector B (CpeB) localizes on vacuole membrane targeted by LC3 and LAMP1 and promotes LC3-II accumulation. Meanwhile, the C. burnetii strain lacking the QpH1 plasmid induced less LC3-II accumulation, which was accompanied by smaller CCVs and lower bacterial loads in THP-1 cells. Expression of CpeB in the strain lacking QpH1 led to restoration in LC3-II accumulation but had no effect on the smaller CCV phenotype. In the severe combined immune deficiency (SCID) mouse model, infections with the strain expressing CpeB led to significantly higher bacterial burdens in the spleen and liver than its parent strain devoid of QpH1. We also found that CpeB targets Rab11a to promote LC3-II accumulation. Intratracheally inoculated C. burnetii resulted in lower bacterial burdens and milder lung lesions in Rab11a conditional knockout (Rab11a-/- CKO) mice. Collectively, these results suggest that CpeB promotes C. burnetii virulence by inducing LC3-II accumulation via a pathway involving Rab11a.


Subject(s)
Coxiella burnetii , Q Fever , Severe Combined Immunodeficiency , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Disease Models, Animal , Host-Pathogen Interactions , Mice , Mice, SCID , Plasmids , Q Fever/microbiology , Severe Combined Immunodeficiency/metabolism , Vacuoles/microbiology , Virulence
4.
Article in English | MEDLINE | ID: mdl-33014895

ABSTRACT

Plague, which is caused by Yersinia pestis, is one of the most dangerous infectious diseases. No FDA-approved vaccine against plague is available for human use at present. To improve the immune safety of Y. pestis EV76 based live attenuated vaccine and to explore the feasibility of aerosolized intratracheal inoculation (i.t.) route for vaccine delivery, a plasminogen activator protease (pla) gene deletion mutant of the attenuated Y. pestis strain EV76-B-SHU was constructed, and its residual virulence and protective efficacy were evaluated in a mouse model via aerosolized intratracheal inoculation (i.t.) or via subcutaneous injection (s.c.). The residual virulence of EV76-B-SHUΔpla was significantly reduced compared to that of the parental strain EV76-B-SHU following i.t. and s.c. infection. The EV76-B-SHUΔpla induced higher levels of mucosal antibody sIgA in the bronchoalveolar lavage fluid of mice immunized by i.t. but not by s.c.. Moreover, after lethal challenge with Y. pestis biovar Microtus strain 201 (avirulent in humans), the protective efficacy and bacterial clearance ability of the EV76-B-SHUΔpla-i.t. group were comparable to those of the EV76-B-SHUΔpla-s.c. and EV76-B-SHU immunized groups. Thus, the EV76-B-SHUΔpla represents an excellent live-attenuated vaccine candidate against pneumonic plague and aerosolized i.t. represents a promising immunization route in mouse model.


Subject(s)
Plague Vaccine , Plague , Yersinia pestis , Animals , Disease Models, Animal , Mice , Plague/prevention & control , Vaccines, Attenuated
5.
PLoS One ; 14(12): e0225671, 2019.
Article in English | MEDLINE | ID: mdl-31805090

ABSTRACT

Q fever is a worldwide zoonosis caused by Coxiella burnetii. Human Q fever is typically acquired through inhalation of contaminated aerosols, resulting in an initial pulmonary infection. In this study, BALB/c mice were infected with C. burnetii via an intratracheal (IT) route using a non-invasive aerosol pulmonary delivery device to directly place the living C. burnetii organisms into the lungs of the mice. The bacterial loads, pathological lesions, and antibody and cellular responses were analyzed and compared with those of mice infected via an intraperitoneal (IP) route. Compared with mice infected via an IP route, mice infected via an IT route exhibited a higher bacterial load and more severe pathological lesions in the heart and lungs at days 3 and 7 post-infection (pi). The levels of interferon-γ and IL-12p70 in the serum of mice infected via the IT route were significantly higher than those of mice infected via the IP route at day 3 pi. In conclusion, this murine model of acute C. burnetii infection via IT inoculation closely resembles the natural route of C. burnetii infection than that of IP injection. Thus, this newly developed model will be useful for investigating the pathogenesis and immunity of C. burnetii aerosol infection, as well as for the evaluation of therapeutic drugs and preventive vaccines of Q fever.


Subject(s)
Coxiella burnetii/immunology , Q Fever/immunology , Q Fever/pathology , Aerosols , Animals , Disease Models, Animal , Female , Infusions, Parenteral , Interferon-gamma/immunology , Interleukin-12/immunology , Lung/immunology , Mice , Mice, Inbred BALB C
6.
Vaccine ; 37(41): 6076-6084, 2019 09 24.
Article in English | MEDLINE | ID: mdl-31477436

ABSTRACT

Human Q fever is recognized as a worldwide public health problem. It often occurs by inhalation of airborne aerosols contaminated with Coxiella burnetii, a gram-negative intracellular bacterium, mainly from domestic livestock. In this study, we analyzed the possibility to establish mucosal and systemic immunity against C. burnetii infection using a pulmonary delivery of chloroform-methanol residue of C. burnetii (CMR) vaccine. Mice were immunized by the intratracheal inoculation of CMR (IT-CMR) or the subcutaneous injection of CMR (SC-CMR), and the immunized mice were challenged with C. burnetii by the intratracheal route. The levels of IFN-γ, IL-12p70, IL-5, and IL-4 in the IT-CMR group in splenic T cells stimulated ex vivo were significantly higher than in the SC-CMR group. Significantly elevated sIgA to C. burnetii was detected in the bronchoalveolar lavage fluid of mice immunized by IT-CMR but not by SC-CMR, which might have contributed to the significant reduction in C. burnetii load and pathological lesions in the lungs of the mice after the challenge of C. burnetii. These results suggest that compared with SC-CMR in mice, IT-CMR was more efficient to elicit cellular and lung mucosal immune responses against aerosol infection of C. burnetii.


Subject(s)
Antibodies, Bacterial/blood , Bacterial Vaccines/immunology , Coxiella burnetii/immunology , Immunity, Mucosal/immunology , Q Fever/prevention & control , Administration, Inhalation , Animals , Bacterial Load/immunology , Bronchoalveolar Lavage Fluid/immunology , Chloroform/chemistry , Disease Models, Animal , Female , Immunoglobulin A/blood , Interferon-gamma/blood , Interleukin-12 Subunit p35/blood , Interleukin-4/blood , Interleukin-5/blood , Methanol/chemistry , Mice , Mice, Inbred BALB C , T-Lymphocytes/immunology , Vaccination
SELECTION OF CITATIONS
SEARCH DETAIL
...