Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
Sci Rep ; 13(1): 5273, 2023 03 31.
Article in English | MEDLINE | ID: mdl-37002325

ABSTRACT

The present study aims to investigate the effect of immunotherapy in a mouse model of allergic rhinitis (AR) and to explore the possible molecular mechanisms of action. An animal model of AR was established by sensitization and challenge of BALB/c mice with house dust mite (HDM) extract. The mice were injected subcutaneously with HDM for immunotherapy. AR nasal symptoms were evaluated according to the frequencies of nose rubbing and sneezing and the degree of rhinorrhea. The nasal mucosa and lung tissue architecture and inflammatory status by histological analysis; the infiltration of eosinophils in nasal lavage fluid (NALF) of mice was observed by Diff-Quik stain; ELISA-based quantification of serum HDM-specific IgE and TH1/TH2 cytokine concentration; and flow cytometry detected the number of serum CD4+/CD8+ cells to evaluate the mechanism of immunotherapy. It was found that after immunotherapy, the AR symptom score was reduced, the number of eosinophils in NALF was reduced, and the infiltration of inflammatory cells and tissue damage in the nasal mucosa and lung tissue were alleviated. Immunotherapy can increase the number of CD4+ T cells in the peripheral blood, increase the ratio of CD4+/CD8+ cells, increase the expression of Th1 cytokines such as IL-2 and IFN-γ, reduce the expression of Th2 cytokines such as IL-4 and IL-5. The results showed that repeated intraperitoneal injection of crude extract of HDM for sensitization, followed by nasal drops can effectively construct a mouse model of AR, and subcutaneous injection of immunotherapy in mice can reduce allergic inflammation in model mice and improve the inflammatory infiltration of the nasal cavity in allergic rhinitis. Immunotherapy can reduce the expression of inflammatory factors in AR, improve Th1/Th2 balance, and may play a role in the treatment of AR by improving the function of immune cells.


Subject(s)
Cytokines , Rhinitis, Allergic , Animals , Mice , Cytokines/metabolism , CD4-Positive T-Lymphocytes , Th2 Cells , Nasal Mucosa/metabolism , Allergens , Immunotherapy/methods , Disease Models, Animal , Mice, Inbred BALB C , Ovalbumin
3.
Sci Rep ; 12(1): 5411, 2022 03 30.
Article in English | MEDLINE | ID: mdl-35354939

ABSTRACT

The CCR3 gene plays a critical role in allergic airway inflammation, such as allergic rhinitis (AR), and there is an inflammatory signal link between the nasal cavity and the CCR3 gene in bone marrow. However, the effects of the CCR3 gene in bone marrow cells on AR are not clear. The present study investigated the roles and underlying mechanisms of the bone marrow CCR3 gene in AR mice. Conditional knockout of the bone marrow CCR3 gene (CKO) in mice was generated using the Cre-LoxP recombination system, and offspring genotypes were identified using polymerase chain reaction (PCR). An ovalbumin-induced AR model was established in CKO and wild-type mice to measure eosinophilic inflammation and the Th2 immune response. The following mechanisms were explored using a specific PI3K/AKT pathway inhibitor (Ly294002). We successfully constructed and bred homozygous CKO mice and confirmed a significant increase in CCR3 expression and PI3K/AKT pathway activity in AR mice. Deficiency of the bone marrow CCR3 gene caused a remarkable reduction of CCR3 expression and the PI3K/AKT signaling pathway activity, inhibited histopathological lesions and eosinophil infiltration of the nasal cavity, and reduced the production of Th2 cytokines in serum, which led to the remission of allergic symptoms in AR mice. Ly294002 treatment also decreased these inflammatory indexes in a concentration-dependent manner and blocked inflammatory signals from CCR3, but it did not affect the high expression of CCR3 in AR mice. Collectively, our results suggest that conditional knockout of the bone marrow CCR3 gene can reduce eosinophilic inflammation and the Th2 immune response, which may be due to inhibition of the PI3K/AKT pathway.


Subject(s)
Phosphatidylinositol 3-Kinases , Rhinitis, Allergic , Animals , Disease Models, Animal , Gene Knockdown Techniques , Immunity , Inflammation/pathology , Mice , Mice, Inbred BALB C , Nasal Mucosa/metabolism , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Receptors, CCR3/genetics , Receptors, CCR3/metabolism
4.
Int Immunopharmacol ; 104: 108509, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34998035

ABSTRACT

The present study aims to investigate the effects of CCR3 gene knockout in bone marrow cells (CCR3-KO) on the mouse model of combined allergic rhinitis and asthma syndrome (CARAS). It was found that CCR3-KO significantly reduced eosinophil (EOS) migration into the nasal (NALF) and bronchoalveolar (BALF) cavities of mice, and decreased Th2 cytokines (such as, IL-4, IL-5 and IL-13) levels in nasal mucosa and lung tissues. In addition, histological analysis showed that the damage degree of nasal mucosa structure in ovalbumin (OVA) modulated CCR3-KO mice was significantly less than that in OVA modulated Wild type (WT) mice, with reduced inflammatory cell infiltration and nasal mucus secretion. The infiltration of inflammatory cells in lung tissue was significantly reduced, and the proliferation of lung smooth muscle layer and extracellular matrix (ECM) production were decreased. Symptom analysis showed that CCR3-KO can reduced allergic rhinitis (AR) signals as nose scratching and sneezing. It was also found CCR3-KO reduce OVA-induced weight loss. The results showed that CCR3-KO could reduce the symptoms of allergic inflammation in CARAS mice by reducing airway inflammatory cell infiltration and down-regulating the expression of Th2 cytokines, and CCR3 gene could be used as a target gene for the treatment of CARAS.


Subject(s)
Asthma/genetics , Receptors, CCR3/genetics , Rhinitis, Allergic/genetics , Allergens/immunology , Animals , Asthma/metabolism , Asthma/pathology , Bone Marrow Cells , Bronchoalveolar Lavage Fluid/cytology , Cytokines/genetics , Eosinophils/immunology , Immunoglobulin E/blood , Lung/metabolism , Lung/pathology , Mice, Inbred C57BL , Mice, Knockout , Nasal Lavage Fluid/cytology , Nasal Mucosa/metabolism , Nasal Mucosa/pathology , Ovalbumin/immunology , Receptors, CCR3/metabolism , Rhinitis, Allergic/metabolism , Rhinitis, Allergic/pathology , Syndrome , Th2 Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...