Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 241
Filter
1.
Environ Int ; 190: 108936, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-39146863

ABSTRACT

Electricity production is a significant source of air pollution. Various factors, including electricity demand, generation efficiency, energy mix, and end-of-pipe control measures, are responsible for the emission changes during electricity generation. Although electricity production more than doubled from 1990 to 2017, air pollutant emissions showed a moderate increase or decrease, which was attributed to mitigating drivers such as increased clean energy use, improved power generation efficiency, and widespread installation of end-of-pipe control facilities. The absence of these mitigating drivers would have increased CO2, fine particulate matter (PM2.5), black carbon, SO2, and NOx emissions in 2017 by 165 %, 403 %, 1070 %, 614 %, and 274 % than their actual levels, respectively. The improved electricity generation efficiency reduced potential CO2, PM2.5, SO2, and NOx emissions by 30 %, 295 %, 119 %, and 52 % compared to actual emissions, respectively. Meanwhile, the installation of end-of-pipe facilities reduced potential SO2 and PM2.5 emissions by 34.7 and 4.0 Tg, respectively. Considerable differences in emissions among countries were found to be attributable to their differences in electricity demand and the implementation of local mitigating polices.

2.
Biomed Mater ; 19(5)2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39059433

ABSTRACT

To explore the feasibility and safety of biomaterials for posterior scleral reinforcement (PSR) in rabbits. Decellularization and genipin crosslink were applied to the fresh bovine pericardium and porcine endocranium, and then mechanical properties, suture retention strength, and stability were tested. PSR operation was performed on 24 rabbit eyes using treated biological materials. Ophthalmic examination was performed regularly before and after PSR operation (1 week, 1 month, 3 months, 6 months). To evaluate the effectiveness, A ultrasound, diopter, and optical coherence tomography were conducted. General condition, fundus photograph, and pathological examination were recorded to evaluate the safety. Compared with genipin crosslinked bovine pericardium (Gen-BP) (21.29 ± 13.29 Mpa), genipin crosslinked porcine endocranium (Gen-PE) (34.85 ± 3.67 Mpa,P< 0.01) showed a closer elastic modulus to that of genipin crosslinked human sclera. There were no complications or toxic reactions directly related to the materials. Capillary hyperplasia, inflammatory cell infiltration, and collagen fiber deposition were observed, and the content of type I collagen fibers increased after PSR. Overall, the choroidal thickness of treated eyes was significantly thickened at different time points after PSR, which were 96.84 ± 21.08 µm, 96.72 ± 22.00 µm, 90.90 ± 16.57 µm, 97.28 ± 14.74 µm, respectively. The Gen-PE group showed changes that were almost consistent with the overall data. Gen-BP and Gen-PE are safe biological materials for PSR. The Gen-PE group demonstrated more significant advantages over the Gen-BP group in terms of material properties.


Subject(s)
Biocompatible Materials , Feasibility Studies , Iridoids , Materials Testing , Sclera , Animals , Rabbits , Biocompatible Materials/chemistry , Cattle , Swine , Iridoids/chemistry , Sutures , Pericardium , Tomography, Optical Coherence , Humans , Cross-Linking Reagents/chemistry , Elastic Modulus
3.
Biomed Pharmacother ; 178: 117210, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39059348

ABSTRACT

The ubiquitin-proteasome system (UPS) is a basic regulatory mechanism in cells that is essential for maintaining cell homeostasis, stimulating signal transduction, and determining cell fate. These biological processes require coordinated signaling cascades across members of the UPS to achieve substrate ubiquitination and deubiquitination. The role of the UPS in fibrotic diseases has attracted widespread attention, and the aberrant expression of UPS members affects the fibrosis process. In this review, we provide an overview of the UPS and its relevance for fibrotic diseases. Moreover, for the first time, we explore in detail how the UPS promotes or inhibits renal fibrosis by regulating biological processes such as signaling pathways, inflammation, oxidative stress, and the cell cycle, emphasizing the status and role of the UPS in renal fibrosis. Further research on this system may reveal new strategies for preventing renal fibrosis.

4.
Abdom Radiol (NY) ; 49(8): 2650-2658, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38977489

ABSTRACT

BACKGROUND: Although systemic therapies are recommended for hepatocellular carcinoma (HCC) patients with main portal vein (MPV) invasion and preserved liver function, the outcome is limited. In the real-world, chemoembolization is a commonly used local treatment for advanced HCC. PURPOSE: To evaluate whether the additional chemoembolization treatment yields survival benefits compared to systemic therapy for HCC patients with MPV invasion and preserved liver function (Child-Pugh score ≤ B7) in a real-world study from multiple centers. PATIENTS AND METHODS: Between January 2020 and December 2022, 91 consecutive HCC patients with MPV invasion who received either systemic medical therapy (i.e., tyrosine kinase inhibitors (TKIs) plus anti-PD-1 immunotherapy, S group, n = 43) or in combination with chemoembolization treatment (S-T group, n = 48) from five centers were enrolled in the study. The primary outcome was overall survival (OS), and the secondary outcomes were progression-free survival (PFS) and treatment response. Adverse events (AEs) related to treatment were also recorded. Survival curves were constructed with the Kaplan-Meier method and compared using the log-rank test. RESULTS: The baseline characteristics were comparable between the two groups. The mean number of chemoembolization sessions per patient was 2.1 (range 1-3). The median OS was 10.0 months and 8.0 months in the S-T group and S group, respectively (P = 0.254). The median PFS between the two groups was similar (4.0 months vs. 4.0 months, P = 0.404). The disease control rate between the S-T and S groups were comparable (60.4% vs. 62.8%, P = 0.816). Although no chemoembolization-related deaths occurred, 13 grade 3-4 AEs occurred in the S-T group. CONCLUSIONS: The results of the real-world study demonstrated that additional chemoembolization treatment did not yield survival benefits compared to TKIs plus anti-PD-1 immunotherapy for the overall patients with advanced HCC and MPV invasion.


Subject(s)
Carcinoma, Hepatocellular , Chemoembolization, Therapeutic , Liver Neoplasms , Portal Vein , Protein Kinase Inhibitors , Humans , Carcinoma, Hepatocellular/therapy , Carcinoma, Hepatocellular/drug therapy , Liver Neoplasms/therapy , Liver Neoplasms/drug therapy , Chemoembolization, Therapeutic/methods , Male , Female , Middle Aged , Aged , Protein Kinase Inhibitors/therapeutic use , Retrospective Studies , Neoplasm Invasiveness , Combined Modality Therapy , Adult , Immune Checkpoint Inhibitors/therapeutic use
7.
Mater Today Bio ; 26: 101103, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38933415

ABSTRACT

Photoaging, primarily caused by ultraviolet (UV) light, is the major factor in extrinsic skin aging. Existing anti-photoaging strategies mainly focus on early sun protection or repairing damaged skin, lacking a comprehensive treatment strategy. Therefore, this study developed a dressing that actively shields against UV radiation and repairs photoaged skin, offering double protection. This study utilized exosome-like nanovesicles derived from Olea europaea leaves (OLELNVs), enhancing them into a potent core biomaterial with high-dose effects and skin-friendly, non-cytotoxic inhibition of cell aging. These nanovesicles were incorporated into a cross-linked hyaluronic acid (HA) and tannic acid (TA) hydrogel with strong UV-absorbing properties, creating the OLELNVs@HA/TA hydrogel system. In vitro and in vivo experiments demonstrated that OLELNVs@HA/TA hydrogel can effectively reduce UV-induced skin damage and promote skin repair and regeneration. Additionally, RNA-seq and clustering analysis of miR168a-5p predicted targets revealed significant down-regulation of the NF-κB signaling pathway, mediating inflammatory aging responses. Overall, the OLELNVs@HA/TA hydrogel represents a novel dual-strategy approach for clinical application in combating photoaging.

8.
Biomimetics (Basel) ; 9(6)2024 May 31.
Article in English | MEDLINE | ID: mdl-38921214

ABSTRACT

As the fields of engineering, energy, and geology become increasingly complex, decision makers face escalating challenges that require skilled solutions to meet practical production needs. Evolutionary algorithms, inspired by biological evolution, have emerged as powerful methods for tackling intricate optimization problems without relying on gradient data. Among these, the tree-seed algorithm (TSA) distinguishes itself due to its unique mechanism and efficient searching capabilities. However, an imbalance between its exploitation and exploration phases can lead it to be stuck in local optima, impeding the discovery of globally optimal solutions. This study introduces an improved TSA that incorporates water-cycling and quantum rotation-gate mechanisms. These enhancements assist the algorithm in escaping local peaks and achieving a more harmonious balance between its exploitation and exploration phases. Comparative experimental evaluations, using the CEC 2017 benchmarks and a well-known metaheuristic algorithm, demonstrate the upgraded algorithm's faster convergence rate and enhanced ability to locate global optima. Additionally, its application in optimizing reservoir production models underscores its superior performance compared to competing methods, further validating its real-world optimization capabilities.

9.
Adv Healthc Mater ; : e2401459, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38938149

ABSTRACT

The development of nanoassemblies, activated by the tumor microenvironment, capable of generating photothermal therapy (PTT) and amplifying the "ROS (·OH) storm," is essential for precise and effective synergistic tumor treatment. Herein, an innovative cascade-amplified nanotheranostics based on biodegradable Pd-BSA-GOx nanocomposite for NIR-II photoacoustic imaging (PAI) guides self-enhanced NIR-II PTT/chemodynamic therapy (CDT)/starvation synergistic therapy. The Pd-BSA-GOx demonstrates the ability to selectively convert overexpressed H2O2 into strongly toxic ·OH by a Pd/Pd2+-mediated Fenton-like reaction at a lower pH level. Simultaneously, the GOx generates H2O2 and gluconic acid, effectively disrupting nutrient supply and instigating tumor starvation therapy. More importantly, the heightened levels of H2O2 and increased acidity greatly enhance the Fenton-like reactivity, generating a significant "·OH storm," thereby achieving Pd2+-mediated cascade-amplifying CDT. The specific PTT facilitated by undegraded Pd accelerates the Fenton-like reaction, establishing a positive feedback process for self-enhancing synergetic PTT/CDT/starvation therapy via the NIR-II guided-PAI. Therefore, the multifunctional nanotheranostics presents a simple and versatile strategy for the precision diagnosis and treatment of tumors.

11.
Adv Healthc Mater ; : e2400715, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38822808

ABSTRACT

Despite advancements in breast cancer treatment, bone metastases remain a significant concern for advanced breast cancer patients. Current theranostics strategies face challenges in integrating tumor theranostics and bone formation. Herein, this work develops an activatable targeted nanomedicine AuMnCO@BSA-N3 (AMCBN) to enable a novel collaborative integration of second near-infrared (NIR-II) fluorescence imaging guided precise theranostics for breast cancer bone metastases and osteogenic microenvironment remolding. This strategy employs a chemical coordination between noble metal complex and metal carbonyl (MnCO), with surface modification of azide groups to enhance tumor affinity through passive and active targeting. The initiated respondent behavior of AMCBN by tumor microenvironment accelerate the degradation of coordinated MnCO, resulting in a rapid release of multifunctional agents for efficient chemodynamic therapy (CDT)/gas synergistic therapy. Meanwhile, the exceptional bone-binding properties enable the efficient and controlled release of Mn2+ ions and carbon monoxide (CO) in the bone microenvironment, thereby facilitating the expression of osteogenesis-related proteins and establishing a novel synchronous theranostics process for tumor-bone repair.

13.
Adv Healthc Mater ; : e2400819, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38722289

ABSTRACT

Mild photothermal therapy (PTT) is a spatiotemporally controllable method that utilizes the photothermal effect at relatively low temperatures (40-45 °C) to especially eliminate tumor tissues with negligible side effects on the surrounding normal tissues. However, the overexpression of heat shock protein 70 (HSP70) and limited effect of single treatment drastically impede the therapeutic efficacy. Herein, the constructed multifunctional core-shell structured Ag-Cu@SiO2-PDA/GOx nanoreactors (APG NRs) that provide a dual inhibition of HSP70 strategy for the second near-infrared photoacoustic (NIR-II PA) imaging-guided combined mild PTT/chemodynamic therapy (CDT). The Ag-Cu cores can convert endogenous H2O2 to hydroxyl radical (•OH), which can induce lipid peroxidation (LPO) and further degrade HSP70. The polydopamine (PDA)/glucose oxidase (GOx) shells are utilized as the NIR-II photothermal agent to generate low temperature, and the GOx can reduce the energy supplies and inhibit energy-dependent HSP70 expression. Furthermore, both the generation of •OH and GOx-mediated energy shortage can reduce HSP70 expression to sensitize mild PTT under 1064 nm laser, and in turn, GOx and laser self-amplify the catalytic reactions of APG NRs for more production of •OH. The multifunctional nanoreactors will provide more potential possibilities for the clinical employment of mild PTT and the advancement of tumor combination therapies.

14.
Mater Today Bio ; 26: 101054, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38633865

ABSTRACT

The hypoxic tumor microenvironment (TME) of osteosarcoma (OS) is the Achilles' heel of oxygen-dependent photodynamic therapy (PDT), and tremendous challenges are confronted to reverse the hypoxia. Herein, we proposed a "reducing expenditure of O2 and broadening sources" dual-strategy and constructed ultrasmall IrO2@BSA-ATO nanogenerators (NGs) for decreasing the O2-consumption and elevating the O2-supply simultaneously. As O2 NGs, the intrinsic catalase (CAT) activity could precisely decompose the overexpressed H2O2 to produce O2 in situ, enabling exogenous O2 infusion. Moreover, the cell respiration inhibitor atovaquone (ATO) would be at the tumor sites, effectively inhibiting cell respiration and elevating oxygen content for endogenous O2 conservation. As a result, IrO2@BSA-ATO NGs systematically increase tumor oxygenation in dual ways and significantly enhance the antitumor efficacy of PDT. Moreover, the extraordinary photothermal conversion efficiency allows the implementation of precise photothermal therapy (PTT) under photoacoustic guidance. Upon a single laser irradiation, this synergistic PDT, PTT, and the following immunosuppression regulation performance of IrO2@BSA-ATO NGs achieved a superior tumor cooperative eradicating capability both in vitro and in vivo. Taken together, this study proposes an innovative dual-strategy to address the serious hypoxia problem, and this microenvironment-regulable IrO2@BSA-ATO NGs as a multifunctional theranostics platform shows great potential for OS therapy.

15.
Adv Sci (Weinh) ; 11(25): e2401046, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38666450

ABSTRACT

Rheumatoid arthritis (RA) is a systemic autoimmune disorder characterized by excessive proliferation of rheumatoid arthritis synovial fibroblasts (RASFs) and accumulation of inflammatory cytokines. Exploring the suppression of RASFs and modulation of the RA microenvironment is considered a comprehensive strategy for RA. In this work, specifically activated nanoagents (MAHI NGs) based on the hypoxic and weakly acidic RA microenvironment are developed to achieve a second near-infrared fluorescence (NIR-II FL)/photoacoustic (PA) dual-model imaging-guided multi-treatment. Due to optimal size, the MAHI NGs passively accumulate in the diseased joint region and undergo rapid responsive degradation, precisely releasing functionalized components: endogenous melanin-nanoparticles (MNPs), hydrogen gas (H2), and indocyanine green (ICG). The released MNPs play a crucial role in ablating RASFs within the RA microenvironment through photothermal therapy (PTT) guided by accurate PA imaging. However, the regional hyperthermia generated by PTT may exacerbate reactive oxygen species (ROS) production and inflammatory response following cell lysis. Remarkably, under the acidic microenvironment, the controlled release of H2 exhibits precise synergistic antioxidant and anti-inflammatory effects with MNPs. Moreover, the ICG, the second near-infrared dye currently approved for clinical use, possesses excellent NIR-II FL imaging properties that facilitate the diagnosis of deep tissue diseases and provide the right time-point for PTT.


Subject(s)
Arthritis, Rheumatoid , Hydrogen , Melanins , Theranostic Nanomedicine , Arthritis, Rheumatoid/therapy , Arthritis, Rheumatoid/metabolism , Arthritis, Rheumatoid/drug therapy , Melanins/metabolism , Hydrogen/pharmacology , Theranostic Nanomedicine/methods , Animals , Nanoparticles/chemistry , Humans , Photoacoustic Techniques/methods , Mice , Indocyanine Green , Disease Models, Animal , Photothermal Therapy/methods , Fibroblasts/metabolism , Fibroblasts/drug effects
16.
Mycopathologia ; 189(3): 32, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622365

ABSTRACT

The rare fungus Candida saopaulonensis has never been reported to be associated with human infection. We report the draft genome sequence of the first clinical isolate of C. saopaulonensis, which was isolated from a very premature infant with sepsis. This is the first genome assembly reaching the near-complete chromosomal level with structural annotation for this species, opening up avenues for exploring evolutionary patterns and genetic mechanisms of pathogenesis.


Subject(s)
Candida , Sepsis , Humans , Infant, Newborn , Candida/genetics , Genome, Fungal , Infant, Premature
17.
Mycopathologia ; 189(3): 35, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38637433

ABSTRACT

Candida auris, an emerging and multidrug-resistant fungal pathogen, has led to numerous outbreaks in China. While the resistance mechanisms against azole and amphotericin B have been studied, the development of drug resistance in this pathogen remains poorly understood, particularly in in vivo-generated drug-resistant strains. This study employed pathogen whole-genome sequencing to investigate the epidemiology and drug-resistance mutations of C. auris using 16 strains isolated from two patients. Identification was conducted through Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, and antimicrobial susceptibilities were assessed using broth microdilution and Sensititre YeastOne YO10. Whole-genome sequencing revealed that all isolates belonged to the South Asian lineage, displaying genetic heterogeneity. Despite low genetic variability among patient isolates, notable mutations were identified, including Y132F in ERG11 and A585S in TAC1b, likely linked to increased fluconazole resistance. Strains from patient B also carried F214L in TAC1b, resulting in a consistent voriconazole minimum inhibitory concentration of 4 µg/mL across all isolates. Furthermore, a novel frameshift mutation in the SNG1 gene was observed in amphotericin B-resistant isolates compared to susceptible ones. Our findings suggest the potential transmission of C. auris and emphasize the need to explore variations related to antifungal resistance. This involves analyzing genomic mutations and karyotypes, especially in vivo, to compare sensitive and resistant strains. Further monitoring and validation efforts are crucial for a comprehensive understanding of the mechanisms of drug resistance in C. auris.


Subject(s)
Antifungal Agents , Candidiasis , Humans , Antifungal Agents/pharmacology , Candidiasis/microbiology , Candida auris , Candida , Amphotericin B/pharmacology , Drug Resistance, Fungal/genetics , Microbial Sensitivity Tests
18.
J Asian Nat Prod Res ; 26(7): 858-864, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38572987

ABSTRACT

A new triterpenoid saponin (1), along with five known compounds (2-6), was isolated from Bupleurum marginatum Wall. ex DC, of which compounds 2-4 were obtained for the first time from this plant. The structures were confirmed by the analysis of 1D, 2D NMR, and HR-ESIMS data, and comparison with previous spectral data. Anti-liver fibrotic activities of the isolates were determined as proliferation inhibition of LPS-induced activation of HSC-T6 in vitro.


Subject(s)
Bupleurum , Saponins , Triterpenes , Saponins/pharmacology , Saponins/chemistry , Saponins/isolation & purification , Bupleurum/chemistry , Triterpenes/pharmacology , Triterpenes/chemistry , Triterpenes/isolation & purification , Molecular Structure , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/isolation & purification , Liver Cirrhosis/drug therapy , Lipopolysaccharides/pharmacology , Animals , Nuclear Magnetic Resonance, Biomolecular
20.
Mater Today Bio ; 26: 101052, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38628351

ABSTRACT

Advanced stages of breast cancer are frequently complicated by bone metastases, which cause significant cancer-related bone destruction and mortality. However, the early precise theranostics of bone metastasis remains a formidable challenge in clinical practice. Herein,a novel all-in-one nanotheranostic system (ABI NYs) combining NIR-II FL/PA dual-modal imaging with photothermal-immunity therapeutic functionalities in one component was designed to precisely localize bone metastasis microscopic lesions and achieve complete tumor ablation at an early stage. The surface modification of the nanosystem with ibandronate (IBN) facilitates both passive and active targeting, significantly improving the detection rate of bone metastasis and suppressing the bone resorption. Superior photothermal performance produces sufficient heat to kill tumor cells while stimulating the upregulation of heat shock proteins 70 (HSP70), which triggers the immunogenic cell death (ICD) effect and the anti-tumor immune response. These all-in-one nanosystems precisely demonstrated early lesion localization in bone metastases and total tumor ablation with a single integration via "one-component, multi-functions" technique. To sum up, ABI NYs, as novel biomineralizing nanosystems integrated with anti-tumor and bone repair, present a synergistic therapy strategy, providing insight into the theranostics of bone metastases and clinical research.

SELECTION OF CITATIONS
SEARCH DETAIL