Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Hazard Mater ; 427: 127909, 2022 04 05.
Article in English | MEDLINE | ID: mdl-34863572

ABSTRACT

Little is known about the distribution and bioaccumulation of organophosphate esters (OPEs) in mangrove ecosystems. In this study, water, sediments, plants and animals were collected from Qi'ao Island Mangrove Nature Reserve to investigate the levels, bioaccumulation and biomagnification of OPEs. Concentrations of ΣOPEs in the mangrove plant Sonneratia apetala (an exotic species) were greater than those in Kandelia obovata (a native species). Translocation factors of OPEs in the two mangrove tree species were greater than 1, indicating that OPEs were mainly absorbed in aboveground tissues. Concentrations of OPEs in mangrove trees and animals were negatively correlated with their log Kow, suggesting that accumulation of OPEs in mangrove biota was influenced by hydrophobicity. A significant difference for concentrations of ΣOPEs was found among the eight mangrove animal species. Concentrations of ΣOPEs in mangrove animals were related with lipid contents, feeding habits and Kow of OPEs. Biota-sediment accumulation factor of OPEs was larger than 1, suggesting that bioaccumulation of OPEs occurred in mangrove animals. The targeted OPEs except isodecyl diphenyl phosphate were not biomagnified in mangrove animals. This study highlights bioaccumulation of OPEs in mangrove biota and suggests further concern about the ecological risk of OPEs to mangrove biota.


Subject(s)
Estuaries , Water Pollutants, Chemical , Animals , Bioaccumulation , China , Ecosystem , Environmental Monitoring , Esters , Organophosphates , Rivers , Water Pollutants, Chemical/analysis
2.
Mar Pollut Bull ; 164: 112099, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33540273

ABSTRACT

A total of seventy surface sediments were collected from fourteen estuaries of South China to investigate the distribution of polybrominated diphenyl ethers (PBDEs), decabromodiphenyl ethane (DBDPE), 1,2-bis (2,4,6-tribromophenoxy) ethane (BTBPE) and dechlorane plus (DP). The concentrations of Σ16PBDEs, DBDPE, BTBPE and DP in estuarine sediments ranged from 0.39 to 81.2, 0.18 to 49.9, not detected to 0.62, and 0.025 to 1.66 ng/g dry weight, respectively. Significant differences for levels of Σ16PBDEs, DBDPE, BTBPE and DP were found among the sediments from fourteen estuaries. Sediments from the Pearl River Estuary had the highest concentrations of Σ16PBDEs, DBDPE and DP. PBDEs and DBDPE were the main halogenated flame retardants in estuarine sediments. BDE 209 was predominant congener of PBDEs with an average contribution of 88.1% to the total PBDEs. 32.9% sediment samples from South China had fanti values lower than 0.65, suggesting that stereoselective enrichment of syn-DP occurred in estuarine sediments.


Subject(s)
Flame Retardants , China , Environmental Monitoring , Estuaries , Flame Retardants/analysis , Halogenated Diphenyl Ethers/analysis , Rivers
3.
Environ Sci Pollut Res Int ; 28(22): 27878-27884, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33517550

ABSTRACT

Nelumbo nucifera Gaertn. (lotus) roots were collected from contaminated sediments which were artificially adding different concentrations of chiral polychlorinated biphenyls (PCBs) to investigate the effect of concentration on the accumulation characteristics and chiral signatures of PCBs in lotus root during its growth period of 150 days. Under high PCB exposure concentration, the biota-sediment accumulation factors (BSAFs) of PCBs 91, 95, and 136 in the lotus root were up to 0.25-0.46 and 8.10-10.5 times higher than those under low-exposure concentration (0.024-0.052). The BSAFs of PCBs 149, 176, and 183 under high-exposure concentration were up to 0.24-0.44, while they were undetected at low concentration. The significant difference observed in the BSAFs based on different concentrations indicates that the lotus root accumulation efficiency toward chiral PCBs increases with the contaminate concentration. Although the (-)-enantiomers of PCBs 91, 95, and 136 were all preferentially accumulated in lotus root under two exposure concentrations, the extent of the preferential accumulation of (-)-PCB 95 decreased with increasing exposure concentration throughout the whole growth period (30-150 days). In addition, the (-)-enantiomers of PCBs 91 and 136 also showed the same tendency during most of the growth period. Conclusively, the exposure concentrations are an important influence factor on the enantioselective accumulation of chiral PCBs in lotus root.


Subject(s)
Nelumbo , Polychlorinated Biphenyls , Water Pollutants, Chemical , Geologic Sediments , Polychlorinated Biphenyls/analysis , Stereoisomerism , Water Pollutants, Chemical/analysis
4.
Clin Exp Allergy ; 49(3): 366-377, 2019 03.
Article in English | MEDLINE | ID: mdl-30415484

ABSTRACT

BACKGROUND: The pathogenesis and pathophysiology of eosinophilia-related chronic cough such as non-asthmatic eosinophilic bronchitis and cough variant asthma are still not clear. OBJECTIVE: This study is to examine the potential role of traffic-related air pollution (TRAP) in eosinophilic inflammation and cough responses. METHODS: Non-sensitized guinea-pigs were exposed to TRAP in an urban traffic tunnel or kept in a filtered air environment for 7 or 14 days. Reflexive cough was measured using citric acid and allyl isothiocyanate (AITC) challenges, respectively. Spontaneous cough counting was determined using audio recording and a waveform analysis. Airway inflammation was evaluated using differential cells in bronchoalveolar lavage fluid (BALF) and lung histopathology. To further elucidate the relationship between airway inflammation and cough hypersensitivity, a subgroup of those exposed for 14 days received a dexamethasone treatment. RESULTS: Compared to reflexive cough count (mean (95% confidence interval) in 10 minutes) provoked by the AITC challenge for the unexposed animals (3.1 (1.7-4.5)), those were increased significantly following both the 7-day (12.0 (6.8-17.2), P < 0.01) and the 14-day (12.0 (6.4-17.6), P < 0.01) TRAP exposure. The effect provoked by the citric acid challenge was more profound following the 14-day exposure (26.0 (19.5-32.5) vs 3.8 (1.5-6.0) for the control, P < 0.001). TRAP exposures enhanced spontaneous cough events, caused a significant increase of eosinophils and neutrophils in BALF and resulted in a dramatic eosinophilic infiltration in submucosal layer of trachea and bronchus, which can be inhibited significantly by dexamethasone treatment. CONCLUSIONS & CLINICAL RELEVANCE: TRAP exposures induced cough hypersensitivity and non-allergic eosinophilic inflammation of airways in guinea-pigs. This study highlights the potential mechanisms of eosinophilia-related chronic cough that can be induced by traffic-related air pollution.


Subject(s)
Air Pollution/adverse effects , Bronchi , Cough , Environmental Exposure/adverse effects , Eosinophilia , Eosinophils/immunology , Hypersensitivity/immunology , Traffic-Related Pollution/adverse effects , Animals , Bronchi/immunology , Bronchi/pathology , Bronchoalveolar Lavage Fluid , Cough/chemically induced , Cough/immunology , Cough/pathology , Eosinophilia/chemically induced , Eosinophilia/immunology , Eosinophilia/pathology , Eosinophils/pathology , Female , Guinea Pigs , Hypersensitivity/pathology , Male
5.
Chemosphere ; 181: 433-439, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28458218

ABSTRACT

Forty-eight surface sediments were collected from three mangrove wetlands in the Pearl River Estuary (PRE) of South China to investigate the distribution of organophosphorus flame retardants (OPFRs) and the relationship between OPFRs and microbial community structure determined by phospholipid fatty acid. Concentrations of ΣOPFRs in mangrove sediments of the PRE ranged from 13.2 to 377.1 ng g-1 dry weight. Levels of ΣOPFRs in mangrove sediments from Shenzhen and Guangzhou were significantly higher than those from Zhuhai, indicating that OPFRs were linked to industrialization and urbanization. Tris(chloropropyl)phosphate was the predominant profile of OPFRs in mangrove sediments from Shenzhen (38.9%) and Guangzhou (35.0%), while the composition profile of OPFRs in mangrove sediments from Zhuhai was dominated by tris(2-chloroethyl) phosphate (25.5%). The mass inventories of OPFRs in the mangrove sediments of Guangzhou, Zhuhai and Shenzhen were 439.5, 133.5 and 662.3 ng cm-2, respectively. Redundancy analysis revealed that OPFRs induced a shift in the structure of mangrove sediment microbial community and the variations were significantly correlated with tris(1,3-dichloro-2-propyl)phosphate and tris(2-butoxyethyl) phosphate.


Subject(s)
Flame Retardants , Wetlands , Antibodies, Phospho-Specific/analysis , China , Estuaries , Flame Retardants/analysis , Geologic Sediments/chemistry , Geologic Sediments/microbiology , Microbiological Phenomena , Organophosphates/analysis , Organophosphorus Compounds/analysis
6.
J Hazard Mater ; 280: 612-8, 2014 Sep 15.
Article in English | MEDLINE | ID: mdl-25218260

ABSTRACT

Enantioselective accumulation of chiral polychlorinated biphenyls (PCBs) 91, 95, 136, 149, 176 and 183 was investigated in lotus plants (Nelumbonucifera spp.) exposed to these chemicals via spiked sediment, to determine uptake and possible biotransformation for aquatic phytoremediation purposes. The concentrations of most PCBs were greatest in roots at 60 d (19.6 ± 1.51-70.6 ± 6.14 µg kg(-1)), but were greatest in stems and leaves at 120 d (25.3 ± 6.14-95.5 ± 19.4 µg kg(-1) and 17.4 ± 4.41-70.4 ± 10.4 µg kg(-1), respectively). Total amounts were greatest at 120 d and significantly higher in roots than those in stems and in leaves (1,457 ± 220-5,852 ± 735 ng, 237 ± 47.1-902 ± 184 ng and 202 ± 60.3-802 ± 90.2 ng, respectively), but represented less than 0.51% of the total mass of PCBs added to sediments, indicating that lotus plants were unlikely to remove appreciable amounts of PCBs from contaminated sediments. Racemic PCB residues in sediment indicate no enantioselective biodegradation by sedimentary microbial consortia over the entire experiment. Preferential accumulation of the (-)-enantiomers of PCBs 91, 95 and 136 were observed in roots, stems and leaves, but non-enantioselective accumulation was observed for PCBs 149, 176 and 183. These results indicate that aquatic plants can accumulate PCBs enantioselectively via root uptake, possibly by biotransformation within plant tissues as observed for terrestrial plants. This is also the first report to identify optical rotation of the atropisomers of PCBs 91 and 95.


Subject(s)
Nelumbonaceae/metabolism , Polychlorinated Biphenyls/metabolism , Biodegradation, Environmental , Food Contamination , Polychlorinated Biphenyls/chemistry
7.
J Food Prot ; 77(8): 1424-7, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25198608

ABSTRACT

Very few studies have investigated the difference in the distribution of metal elements between rice and rice bran samples. In this study, the concentrations of 27 metal elements (Li, Be, Na, Mg, Al, K, Ca, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Se, Rb, Sr, Ag, Cd, Cs, Ba, Tl, Pb, and U) in 56 polished rice and their corresponding bran samples were determined. A significant difference in concentrations of all elements except Ag and Cd was found between rice and bran (P < 0.05), with bran/rice ratios of 1.21 to 36.3. High concentrations of metal elements, especially that of the heavy metal Cr, in bran samples present a potential safety issue for bran products, such as food and feed containing bran. Pb isotope ((204)Pb, (206)Pb, (207)Pb, and (208)Pb) ratios also were determined. The (206)Pb/(207)Pb and (208)Pb/(207)Pb ratios in bran were generally higher than those in rice (P < 0.0001), and rice and bran samples were distinctly different from each other, indicating that Pb isotope composition is an effective for discriminating between bran and rice samples.


Subject(s)
Food Contamination/analysis , Isotopes/analysis , Metals/analysis , Oryza/chemistry , Seeds/chemistry
8.
J Food Prot ; 77(4): 665-9, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24680082

ABSTRACT

In previous studies, inorganic arsenic and total arsenic concentrations in rice bran have been much higher than those in polished rice obtained from the same whole paddy rice. However, the arsenic species distribution between rice and bran is still unknown, especially for arsenite (AsIII) and arsenate (AsV). To characterize the arsenic species in rice and bran and explain the elevated concentrations of inorganic arsenic and total arsenic, four arsenic species, AsIII, AsV, dimethylarsinic acid, and monomethylarsonic acid, were evaluated. Rice and bran samples (n = 108) purchased from local markets in the People's Republic of China were analyzed using high-performance liquid chromatography with hydride generation and atomic fluorescence spectrometry and then microwave extraction. As expected, most of the arsenic was found in bran, with bran/rice ratios of 6.8 for total arsenic species and 6.4 for inorganic arsenic. Among four arsenic species, the maximum bran/rice ratio was 104.7 (335/3.2 µg kg(-1)) for AsV followed by 1.2 (69.2/56.1) for AsIII, 1.3 (6.7/5.2) for dimethylarsinic acid, and 4.0 (0.8/0.2) for monomethylarsonic acid. Thus, the large difference in arsenic concentration between rice and bran was mostly due to the difference in the AsV concentration, which account for 96 and 95 % of the difference for total arsenic species and inorganic arsenic, respectively. Therefore, the possibility of AsV contamination in rice bran and its by-products needs more study. This study is the first in which concentrations of AsIII and AsV in rice and bran have been documented, revealing that a higher percentage of AsV occurs in bran than in rice.


Subject(s)
Arsenates/analysis , Food Contamination/analysis , Oryza/chemistry , Arsenates/administration & dosage , Arsenic/analysis , Arsenites/analysis , China , Chromatography, High Pressure Liquid , Humans , Spectrometry, Fluorescence
9.
Chirality ; 23(6): 479-86, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21506167

ABSTRACT

This study used chiral columns packed with 3-µm and 5-µm particles to comparatively separate enantiomers of 9 triazole fungicides, and Lux Cellulose-1 columns with chiral stationary phase of cellulose-tris-(3,5-dimethylphenylcarbamate) were used on reverse-phase high-performance liquid chromatography with flow rates of 0.3 and 1.0 mL min(-1) for 3-µm and 5-µm columns, respectively. The (+)-enantiomers of hexaconazole (1), tetraconazole (4), myclobutanil (7), fenbuconazole (8) and the (-)-enantiomers of flutriafol (2), diniconazole (3), epoxiconazole (5), penconazole (6), triadimefon (9) were firstly eluted from both columns, the elution orders identified with an optical rotation detector didn't change with variety of column particles and mobile phases (acetronitrile/water and methanol/water). The plots of natural logarithms of the selectivity factors (ln α) for all fungicides except penconazole (6) versus the inverse of temperature (1/T) were linear in range of 5-40°C. The thermodynamic parameters (ΔH°, ΔS°, ΔΔH° and ΔΔS°) were calculated using Van't Hoff equations to understand the thermosynamic driving forces for enantioseparation. This work will be very helpful to obtain good enantiomeric separation and establish more efficient analytical method for triazole fungicides. Chirality, 2011. © 2011 Wiley-Liss, Inc.


Subject(s)
Chromatography, Reverse-Phase/methods , Fungicides, Industrial/analysis , Fungicides, Industrial/chemistry , Triazoles/analysis , Triazoles/chemistry , Animals , Chlorobenzenes/analysis , Chlorobenzenes/chemistry , Chromatography, High Pressure Liquid/methods , Epoxy Compounds/analysis , Epoxy Compounds/chemistry , Mice , Nitriles/analysis , Nitriles/chemistry , Particle Size , Stereoisomerism , Temperature , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...