Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Rep ; 14(1): 14245, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38902499

ABSTRACT

The process of inference reflects the structure of propositions with assigned truth values, either true or false. Modus ponens is a fundamental form of inference that involves affirming the antecedent to affirm the consequent. Inspired by the quantum computer, the superposition of true and false is used for the parallel processing. In this work, we propose a quantum version of modus ponens. Additionally, we introduce two generations of quantum modus ponens: quantum modus ponens inference chain and multidimensional quantum modus ponens. Finally, a simple implementation of quantum modus ponens on the OriginQ quantum computing cloud platform is demonstrated.

2.
Mol Cell Endocrinol ; 590: 112271, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38759835

ABSTRACT

Hyperthyroidism is becoming increasingly important as an independent risk factor for cardiovascular disease, eventually resulting in cardiac hypertrophy and heart failure. The 14-3-3 protein family subtypes regulate many cellular processes in eukaryotes by interacting with a diverse array of client proteins. Considering that the 14-3-3η protein protects cardiomyocytes by affecting mitochondrial function, exploring the biological influence and molecular mechanisms by which 14-3-3η alleviates the cardiac hypertrophy of hyperthyroidism is imperative. In vivo and in vitro, RT-PCR, Western blot, and Mitochondrial tracking assay were performed to understand the molecular mechanism of thyroxine-induced cardiomyocyte hypertrophy. HE staining, transmission electron microscopy, and immunofluorescence were used to observe intuitively changes of hearts and cardiomyocytes. The in vivo and in vitro results indicated that overexpression of the 14-3-3η ameliorated thyroxine-induced cardiomyocyte hypertrophy, whereas knockdown of the 14-3-3η protein aggravated thyroxine-induced cardiomyocyte hypertrophy. Additionally, overexpression of the 14-3-3η protein reduces thyroxine-induced mitochondrial damage and mitophagy in cardiomyocytes. Overexpression of 14-3-3η protein improves excessive mitophagy in the myocardium caused by thyroxine and thus prevents cardiac hypertrophy.


Subject(s)
14-3-3 Proteins , Cardiomegaly , Mitophagy , Myocytes, Cardiac , Thyroxine , Animals , Male , Mice , Rats , 14-3-3 Proteins/metabolism , 14-3-3 Proteins/genetics , Cardiomegaly/metabolism , Cardiomegaly/pathology , Cardiomegaly/genetics , Mice, Inbred C57BL , Mitochondria/metabolism , Mitochondria/drug effects , Mitochondria/ultrastructure , Mitophagy/drug effects , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , Myocytes, Cardiac/ultrastructure , Thyroxine/pharmacology
3.
Sci Rep ; 14(1): 1896, 2024 01 22.
Article in English | MEDLINE | ID: mdl-38253693

ABSTRACT

Cancer is characterized by uncontrolled cell proliferation, leading to cellular damage or death. Acute lymphoblastic leukemia (ALL), a kind of blood cancer, that affects lymphoid cells and is a challenging malignancy to treat. The Fermatean fuzzy set (FFS) theory is highly effective at capturing imprecision due to its capacity to incorporate extensive problem descriptions that are unclear and periodic. Within the framework of this study, two innovative aggregation operators: The Fermatean fuzzy Dynamic Weighted Averaging (FFDWA) operator and the Fermatean fuzzy Dynamic Weighted Geometric (FFDWG) operator are presented. The important attributes of these operators, providing a comprehensive elucidation of their significant special cases has been discussed in details. Moreover, these operators are utilized in the development of a systematic approach for addressing scenarios involving multiple attribute decision-making (MADM) problems with Fermatean fuzzy (FF) data. A numerical example concerning on finding the optimal treatment approach for ALL using the proposed operators, is provided. At the end, the validity and merits of the new method to illustrate by comparing it with the existing methods.


Subject(s)
Hematologic Neoplasms , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Humans , Cell Proliferation , Precursor Cell Lymphoblastic Leukemia-Lymphoma/therapy
4.
Math Biosci Eng ; 20(2): 4258-4273, 2023 01.
Article in English | MEDLINE | ID: mdl-36899626

ABSTRACT

Magnetic resonance (MR) image enhancement technology can reconstruct high-resolution image from a low-resolution image, which is of great significance for clinical application and scientific research. T1 weighting and T2 weighting are the two common magnetic resonance imaging modes, each of which has its own advantages, but the imaging time of T2 is much longer than that of T1. Related studies have shown that they have very similar anatomical structures in brain images, which can be utilized to enhance the resolution of low-resolution T2 images by using the edge information of high-resolution T1 images that can be rapidly imaged, so as to shorten the imaging time needed for T2 images. In order to overcome the inflexibility of traditional methods using fixed weights for interpolation and the inaccuracy of using gradient threshold to determine edge regions, we propose a new model based on previous studies on multi-contrast MR image enhancement. Our model uses framelet decomposition to finely separate the edge structure of the T2 brain image, and uses the local regression weights calculated from T1 image to construct a global interpolation matrix, so that our model can not only guide the edge reconstruction more accurately where the weights are shared, but also carry out collaborative global optimization for the remaining pixels and their interpolated weights. Experimental results on a set of simulated MR data and two sets of real MR images show that the enhanced images obtained by the proposed method are superior to the compared methods in terms of visual sharpness or qualitative indicators.


Subject(s)
Magnetic Resonance Imaging , Neuroimaging , Magnetic Resonance Imaging/methods , Image Enhancement , Brain , Image Processing, Computer-Assisted/methods
5.
Comput Intell Neurosci ; 2022: 3404858, 2022.
Article in English | MEDLINE | ID: mdl-35082842

ABSTRACT

With the rapid development of remote sensing technology, change detection (CD) methods based on remote sensing images have been widely used in land resource planning, disaster monitoring, and urban expansion, among other fields. The purpose of CD is to accurately identify changes on the Earth's surface. However, most CD methods focus on changes between the pixels of multitemporal remote sensing image pairs while ignoring the coupled relationships between them. This often leads to uncertainty about edge pixels with regard to changing objects and misclassification of small objects. To solve these problems, we propose a CD method for remote sensing images that uses a coupled dictionary and deep learning. The proposed method realizes the spatial-temporal modeling and correlation of multitemporal remote sensing images through a coupled dictionary learning module and ensures the transferability of reconstruction coefficients between multisource image blocks. In addition, we constructed a differential feature discriminant network to calculate the dissimilarity probability for the change area. A new loss function that considers true/false discrimination loss, classification loss, and cross-entropy loss is proposed. The most discriminating features can be extracted and used for CD. The performance of the proposed method was verified on two well-known CD datasets. Extensive experimental results show that the proposed method is superior to other methods in terms of precision, recall, F 1-score, IoU, and OA.


Subject(s)
Deep Learning , Remote Sensing Technology
6.
IEEE Trans Neural Netw Learn Syst ; 33(9): 5080-5084, 2022 Sep.
Article in English | MEDLINE | ID: mdl-33646959

ABSTRACT

Shor's quantum algorithm and other efficient quantum algorithms can break many public-key cryptographic schemes in polynomial time on a quantum computer. In response, researchers proposed postquantum cryptography to resist quantum computers. The multivariate cryptosystem (MVC) is one of a few options of postquantum cryptography. It is based on the NP-hardness of the computational problem to solve nonlinear equations over a finite field. Recently, Wang et al. (2018) proposed a MVC based on extended clipped hopfield neural networks (eCHNN). Its main security assumption is backed by the discrete logarithm (DL) problem over Matrics. In this brief, we present quantum cryptanalysis of Wang et al. 's eCHNN-based MVC. We first show that Shor's quantum algorithm can be modified to solve the DL problem over Matrics. Then we show that Wang et al. 's construction of eCHNN-based MVC is not secure against quantum computers; this against the original intention of that multivariate cryptography is one of a few options of postquantum cryptography.

7.
Math Biosci Eng ; 17(6): 7353-7377, 2020 10 27.
Article in English | MEDLINE | ID: mdl-33378900

ABSTRACT

Remote sensing image classification exploiting multiple sensors is a very challenging problem: The traditional methods based on the medium- or low-resolution remote sensing images always provide low accuracy and poor automation level because the potential of multi-source remote sensing data are not fully utilized and the low-level features are not effectively organized. The recent method based on deep learning can efficiently improve the classification accuracy, but as the depth of deep neural network increases, the network is prone to be overfitting. In order to address these problems, a novel Two-channel Densely Connected Convolutional Networks (TDCC) is proposed to automatically classify the ground surfaces based on deep learning and multi-source remote sensing data. The main contributions of this paper includes the following aspects: First, the multi-source remote sensing data consisting of hyperspectral image (HSI) and Light Detection and Ranging (LiDAR) are pre-processed and re-sampled, and then the hyperspectral data and LiDAR data are input into the feature extraction channel, respectively. Secondly, two-channel densely connected convolutional networks for feature extraction were proposed to automatically extract the spatial-spectral feature of HSI and LiDAR. Thirdly, a feature fusion network is designed to fuse the hyperspectral image features and LiDAR features. The fused features were classified and the output result is the category of the corresponding pixel. The experiments were conducted on popular dataset, the results demonstrate that the competitive performance of the TDCC with respect to classification performance compared with other state-of-the-art classification methods in terms of the OA, AA and Kappa, and it is more suitable for the classification of complex ground surfaces.

8.
Entropy (Basel) ; 22(1)2020 Jan 04.
Article in English | MEDLINE | ID: mdl-33285841

ABSTRACT

In this paper, we give a definition for fuzzy Kolmogorov complexity. In the classical setting, the Kolmogorov complexity of a single finite string is the length of the shortest program that produces this string. We define the fuzzy Kolmogorov complexity as the minimum classical description length of a finite-valued fuzzy language through a universal finite-valued fuzzy Turing machine that produces the desired fuzzy language. The classical Kolmogorov complexity is extended to the fuzzy domain retaining classical descriptions. We show that our definition is robust, that is to say, the complexity of a finite-valued fuzzy language does not depend on the underlying finite-valued fuzzy Turing machine.

SELECTION OF CITATIONS
SEARCH DETAIL