Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurosci Res ; 102(1)2024 01.
Article in English | MEDLINE | ID: mdl-38284844

ABSTRACT

Chronic cerebral ischemia (CCI) can lead to vascular cognitive impairment, but therapeutic options are limited. Cognitive-exercise dual-task (CEDT), as a potential rehabilitation intervention, can attenuate cognitive impairment. However, the related mechanisms remain unclear. In this study, 2-vessel occlusion (2-VO) in male SD rats was performed to establish the CCI model. The rats were treated with cognitive, exercise, or CEDT intervention for 21 days. The Morris water maze (MWM) test was used to assess cognitive ability. TUNEL staining was used to detect the neuronal apoptosis. Immunofluorescence, RT-qPCR and Western blot were used to detect the protein or mRNA levels of EphrinA3, EphA4, p-PI3K, and p-Akt. The results showed that CEDT could improve performance in the MWM test, reverse the increased expression of EphrinA3 and EphA4, and the reduced expression of p-PI3K and p-Akt in CCI rats, which was superior to exercise and cognitive interventions. In vitro, oxygenglucose deprivation (OGD) challenge of astrocytes and neuronal cells were used to mimic cerebral ischemia. Immunofluorescence assay revealed that the levels of MAP-2, p-PI3K, and p-Akt were reduced in EphrinA3 overexpressed cells after OGD stimulation. Finally, the knock-down of EphrinA3 by shRNA significantly promoted the recovery of cognitive function and activation of PI3K/Akt after CEDT treatment in CCI rats. In conclusion, our study suggests that CEDT promotes cognitive function recovery after CCI by regulating the signaling axis of EphrinA3/EphA4/PI3K/Akt.


Subject(s)
Brain Ischemia , Phosphatidylinositol 3-Kinases , Male , Animals , Rats , Rats, Sprague-Dawley , Proto-Oncogene Proteins c-akt , Signal Transduction , Cognition
2.
Exp Neurol ; 372: 114617, 2024 02.
Article in English | MEDLINE | ID: mdl-38007209

ABSTRACT

BACKGROUND: The prevalence of vascular cognitive impairment induced by chronic cerebral ischemia (CCI) is increasing year by year. Cognitive-exercise dual-task intervention has shown beneficial effects on improving cognitive performance in ischemic patients. It is well known that the tyrosine kinase ligand-receptor (Ephrin-Eph) system plays an important role in synaptic transmission and that the cAMP/PKA pathway is associated with cognitive function. However, it is unclear whether they are responsible for the dual-task improving cognitive impairment in CCI. METHODS: Bilateral common carotid artery occlusion (BCCAO) in SD rats was used to establish the CCI model. The effects of dual-task and single-task on cognitive function and the expressions of EphrinA3, EphA4, cAMP, and PKA in rats were detected by the novel object recognition (NOR) test, immunofluorescence staining, quantitative real-time polymerase chain reaction (qPCR), and Western blotting (WB), respectively. Overexpression or knockdown of EphrinA3 in astrocytes or rats were constructed by lentivirus infection to verify the effects of EphrinA3/EphA4 on the cAMP/PKA pathway. RESULTS: After dual-task intervention, the discrimination index of rats increased significantly compared with the rats in the CCI group. The expressions of EphrinA3 and EphA4 were decreased, while the expressions of cAMP and PKA were increased. Furthermore, knockdown of EphrinA3 alleviated the trend of CCI-induced cognitive decline in rats and OGD-stimulated cellular damage. It also increased cAMP/PKA expression in hippocampal neurons. CONCLUSION: Cognitive-exercise dual-task can significantly improve the cognitive impairment induced by CCI, and this effect may be better than that of the cognitive or exercise single-task intervention. The improvement may be related to the inhibition of EphrinA3/EphA4, followed by activation of the cAMP/PKA pathway.


Subject(s)
Brain Ischemia , Cognitive Dysfunction , Humans , Rats , Animals , Rats, Sprague-Dawley , Hippocampus/metabolism , Brain Ischemia/complications , Brain Ischemia/metabolism , Cognitive Dysfunction/etiology , Cognitive Dysfunction/metabolism , Cognition
3.
Redox Biol ; 64: 102782, 2023 08.
Article in English | MEDLINE | ID: mdl-37315345

ABSTRACT

Rostral ventrolateral medulla (RVLM) is thought to serve as a major vasomotor center that participates in controlling the progression of stress-induced hypertension (SIH). Circular RNAs (circRNAs) perform important functions in the regulation of diverse physiological and pathological processes. However, information concerning the functions of RVLM circRNAs on SIH remains limited. RNA sequencing was performed to profile circRNA expression in RVLMs from SIH rats, which were induced by electric foot shocks and noises. The functions of circRNA Galntl6 in reducing blood pressure (BP) and its potential molecular mechanisms on SIH were investigated via various experiments, such as Western blot and intra-RVLM microinjection. A total of 12,242 circRNA transcripts were identified, among which circRNA Galntl6 was dramatically downregulated in SIH rats. The upregulation of circRNA Galntl6 in RVLM effectively decreased the BP, sympathetic outflow, and neuronal excitability in SIH rats. Mechanistically, circRNA Galntl6 directly sponged microRNA-335 (miR-335) and restrained it to reduce oxidative stress. Reintroduction of miR-335 observably reversed the circRNA Galntl6-induced attenuation of oxidative stress. Furthermore, Lig3 can be a direct target of miR-335. MiR-335 inhibition substantially increased the expression of Lig3 and suppressed oxidative stress, and these favorable effects were blocked by Lig3 knockdown. CircRNA Galntl6 is a novel factor that impedes SIH development, and the circRNA Galntl6/miR-335/Lig3 axis represents one of the possible mechanisms. These findings demonstrated circRNA Galntl6 as a possibly useful target for the prevention of SIH.


Subject(s)
Hypertension , MicroRNAs , Animals , Rats , Blood Pressure , Hypertension/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , N-Acetylgalactosaminyltransferases/genetics , Oxidative Stress/physiology , RNA, Circular/genetics , RNA, Circular/metabolism , RNA, Circular/pharmacology , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...