Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Synth Biol ; 10(10): 2649-2660, 2021 10 15.
Article in English | MEDLINE | ID: mdl-34449214

ABSTRACT

Capturing, storing, and sharing biological DNA parts data are integral parts of synthetic biology research. Here, we detail updates to the ICE biological parts registry software platform that enable these processes, describe our implementation of the Web of Registries concept using ICE, and establish Bioparts, a search portal for biological parts available in the public domain. The Web of Registries enables standalone ICE installations to securely connect and form a distributed parts database. This distributed database allows users from one registry to query and access plasmid, strain, (DNA) part, plant seed, and protein entry types in other connected registries. Users can also transfer entries from one ICE registry to another or make them publicly accessible. Bioparts, the new search portal, combines the ease and convenience of modern web search engines with the capabilities of bioinformatics search tools such as BLAST. This portal, available at bioparts.org, allows anyone to search for publicly accessible biological part information (e.g., NCBI, iGEM, SynBioHub, Addgene), including parts publicly accessible through ICE Registries. Additionally, the portal offers a REST API that enables third-party applications and tools to access the portal's functionality programmatically.


Subject(s)
Software , Synthetic Biology/methods , Computational Biology , Databases, Factual
2.
Lab Chip ; 18(13): 1875-1883, 2018 06 26.
Article in English | MEDLINE | ID: mdl-29796562

ABSTRACT

Smooth muscle cell (SMC) heterogeneity plays an important role in vascular remodeling, a life-threatening hallmark of many vascular diseases. However, the characterization of SMCs at the single-cell level is stymied by drawbacks of contemporary single-cell protein measurements, including antibody probe cross-reactivity, chemical fixation artifacts, limited isoform-specific probes, low multiplexing and difficulty sampling cells with irregular morphologies. To scrutinize healthy vessels for subpopulations of SMCs with proliferative-like phenotypes, we developed a high-specificity, multiplexed single-cell immunoblotting cytometry tool for unfixed, uncultured primary cells. We applied our assay to demonstrate maturation stage profiling of aortic SMCs freshly isolated from individual mice. After ensuring unbiased sampling of SMCs (80-120 µm in length), we performed single-SMC electrophoretic protein separations, which resolve protein signal from off-target antibody binding, and immunoblotted for differentiation markers α-SMA, CNN-1 and SMMHC (targets ranging from 34 kDa to 227 kDa). We identified a subpopulation of immature-like SMCs, supporting the recently-established mechanism that only a subset of SMCs is responsible for vascular remodeling. Furthermore, the low sample requirements of our assay enable single-mouse resolution studies, which minimizes animal sacrifice and experimental costs while reporting animal-to-animal phenotypic variation, essential for achieving reproducibility and surmounting the drawbacks of pooling primary cells from different animals.


Subject(s)
Lab-On-A-Chip Devices , Muscle Proteins/analysis , Myocytes, Smooth Muscle/classification , Single-Cell Analysis/instrumentation , Animals , Aorta/cytology , Cells, Cultured , Electrophoresis/instrumentation , Immunoblotting/instrumentation , Mice , Myocytes, Smooth Muscle/chemistry , Myocytes, Smooth Muscle/cytology , Myocytes, Smooth Muscle/physiology , Phenotype
3.
Theranostics ; 8(3): 815-829, 2018.
Article in English | MEDLINE | ID: mdl-29344309

ABSTRACT

Understanding the contribution of vascular cells to blood vessel remodeling is critical for the development of new therapeutic approaches to cure cardiovascular diseases (CVDs) and regenerate blood vessels. Recent findings suggest that neointimal formation and atherosclerotic lesions involve not only inflammatory cells, endothelial cells, and smooth muscle cells, but also several types of stem cells or progenitors in arterial walls and the circulation. Some of these stem cells also participate in the remodeling of vascular grafts, microvessel regeneration, and formation of fibrotic tissue around biomaterial implants. Here we review the recent findings on how adult stem cells participate in CVD development and regeneration as well as the current state of clinical trials in the field, which may lead to new approaches for cardiovascular therapies and tissue engineering.


Subject(s)
Adult Stem Cells/cytology , Cardiovascular Diseases/therapy , Vascular Remodeling , Adult Stem Cells/transplantation , Animals , Cardiovascular Diseases/pathology , Humans , Stem Cell Transplantation/methods , Tissue Engineering/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...