Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 82
Filter
Add more filters










Publication year range
1.
Planta ; 259(6): 151, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38733553

ABSTRACT

MAIN CONCLUSION: The genetic diversity in tetraploid wheat provides a genetic pool for improving wheat productivity and environmental resilience. The tetraploid wheat had strong N uptake, translocation, and assimilation capacity under N deficit stress, thus alleviating growth inhibition and plant N loss to maintain healthy development and adapt to environments with low N inputs. Tetraploid wheat with a rich genetic variability provides an indispensable genetic pool for improving wheat yield. Mining the physiological mechanisms of tetraploid wheat in response to nitrogen (N) deficit stress is important for low-N-tolerant wheat breeding. In this study, we selected emmer wheat (Kronos, tetraploid), Yangmai 25 (YM25, hexaploid), and Chinese spring (CS, hexaploid) as materials. We investigated the differences in the response of root morphology, leaf and root N accumulation, N uptake, translocation, and assimilation-related enzymes and gene expression in wheat seedlings of different ploidy under N deficit stress through hydroponic experiments. The tetraploid wheat (Kronos) had stronger adaptability to N deficit stress than the hexaploid wheats (YM25, CS). Kronos had better root growth under low N stress, expanding the N uptake area and enhancing N uptake to maintain higher NO3- and soluble protein contents. Kronos exhibited high TaNRT1.1, TaNRT2.1, and TaNRT2.2 expression in roots, which promoted NO3- uptake, and high TaNRT1.5 and TaNRT1.8 expression in roots and leaves enhanced NO3- translocation to the aboveground. NR and GS activity in roots and leaves of Kronos was higher by increasing the expression of TANIA2, TAGS1, and TAGS2, which enhanced the reduction and assimilation of NO3- as well as the re-assimilation of photorespiratory-released NH4+. Overall, Kronos had strong N uptake, translocation, and assimilation capacity under N deficit stress, alleviating growth inhibition and plant N loss and thus maintaining a healthy development. This study reveals the physiological mechanisms of tetraploid wheat that improve nitrogen uptake and assimilation adaptation under low N stress, which will provide indispensable germplasm resources for elite low-N-tolerant wheat improvement and breeding.


Subject(s)
Nitrogen , Plant Roots , Stress, Physiological , Tetraploidy , Triticum , Triticum/genetics , Triticum/metabolism , Triticum/growth & development , Triticum/physiology , Nitrogen/metabolism , Stress, Physiological/genetics , Plant Roots/genetics , Plant Roots/growth & development , Plant Roots/metabolism , Plant Roots/physiology , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Leaves/growth & development , Plant Leaves/physiology , Adaptation, Physiological/genetics , Seedlings/genetics , Seedlings/growth & development , Seedlings/physiology , Seedlings/metabolism , Gene Expression Regulation, Plant
2.
Physiol Plant ; 176(3): e14329, 2024.
Article in English | MEDLINE | ID: mdl-38695156

ABSTRACT

Although tetraploid wheat has rich genetic variability for cultivar improvement, its physiological mechanisms associated with photosynthetic productivity and resilience under nitrogen (N) deficit stress have not been investigated. In this study, we selected emmer wheat (Kronos, tetraploid), Yangmai 25 (YM25, hexaploid), and Chinese Spring (CS, hexaploid) as materials and investigated the differences in net photosynthetic rate (Pn), carboxylation capacity, electron transfer capacity, photosynthetic product output, and photosynthetic N allocation under normal N (CK) and low N (LN) through hydroponic experiments. Tetraploid emmer wheat (Kronos) had a stronger photosynthetic capacity than hexaploid wheat (YM25, CS) under low N stress, which mainly associated with the higher degree of PSII opening, electron transfer rate, Rubisco content and activity, ATP/ADP ratio, Rubisco activase (Rca) activity and Rubisco activation state, and more leaves N allocation to the photosynthetic apparatus, especially the proportion of N allocation to carboxylation under low N stress. Moreover, Kronos reduced the feedback inhibition of photosynthesis by sucrose accumulation through higher sucrose phosphate synthetase (SPS) activity and triose phosphate utilization rate (VTPU). Overall, Kronos could allocate more N to the photosynthetic components to improve Rubisco content and activity to maintain photosynthetic capacity under low N stress while enhancing triose phosphate output to reduce feedback inhibition of photosynthesis. This study reveals the physiological mechanisms of emmer wheat that maintain the photosynthetic capacity under low N stress, which will provide indispensable germplasm resources for elite low-N-tolerant wheat improvement and breeding.


Subject(s)
Nitrogen , Photosynthesis , Ribulose-Bisphosphate Carboxylase , Triticum , Photosynthesis/physiology , Triticum/physiology , Triticum/genetics , Triticum/metabolism , Nitrogen/metabolism , Ribulose-Bisphosphate Carboxylase/metabolism , Stress, Physiological , Plant Leaves/physiology , Plant Leaves/metabolism , Adaptation, Physiological , Plant Proteins/metabolism , Plant Proteins/genetics , Chlorophyll/metabolism , Photosystem II Protein Complex/metabolism , Glucosyltransferases/metabolism , Glucosyltransferases/genetics
3.
Plant Physiol ; 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38590166

ABSTRACT

Photosynthesis is a major trait of interest for development of high-yield crop plants. However, little is known about the effects of high-density planting on photosynthetic responses at the whole-canopy level. Using the high-yielding maize (Zea mays L.) cultivars 'LY66', 'MC670', and 'JK968', we here conducted a two-year field experiment to assess ear development in addition to leaf characteristics and photosynthetic parameters in each canopy layer at four planting densities. Increased planting density promoted high grain yield and population-scale biomass accumulation despite reduced per-plant productivity. MC670 had the strongest adaptability to high-density planting conditions. Physiological analysis showed that increased planting density primarily led to decreases in the single-leaf area above the ear for LY66 and MC670 and below the ear for JK968. Furthermore, high planting density decreased chlorophyll content and the photosynthetic rate due to decreased canopy transmission, leading to severe decreases in single-plant biomass accumulation in the lower canopy. Moreover, increased planting density improved pre-silking biomass transfer, especially in the lower canopy. Yield showed significant positive relationships with photosynthesis and biomass in the lower canopy, demonstrating the important contributions of these leaves to grain yield under dense planting conditions. Increased planting density led to retarded ear development as a consequence of reduced glucose and fructose contents in the ears, indicating reductions in sugar transport that were associated with limited sink organ development, reduced kernel number, and yield loss. Overall, these findings highlighted the photosynthetic capacities of the lower canopy as promising targets for improving maize yield under dense planting conditions.

4.
Planta ; 259(5): 107, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38554244

ABSTRACT

MAIN CONCLUSION: Early-stage low nitrogen priming promotes root growth and delays leaf senescence through gene expression, enhancing nitrogen absorption and assimilation in wheat seedlings, thereby alleviating growth inhibition under nitrogen deficit stress and supporting normal seedling development. Verifying the strategies to reduce the amount of nitrogen (N) fertilizer while maintaining high crop yields is important for improving crop N use efficiency (NUE) and protecting the environment. To determine whether low N (LN) priming (LNP) can alleviate the impact of N-deficit stress on the growth of wheat seedlings and improve their tolerance to N-deficit stress, we conducted hydroponic experiments using two wheat cultivars, Yangmai 158 (YM158, LN tolerant) and Zaoyangmai (ZYM, LN sensitive) to study the effects of LNP on wheat seedlings under N-deficit stress. N-deficit stress decreased the plant dry weight, leaf area, and leaf N content (LNC), while LNP could significantly reduce this reduction. Distinct sensitivities to N-deficit stress were observed between the wheat cultivars, with ZYM showing an early decrease in leaf N content compared to YM158, which exhibited a late-stage reduction. LNP promoted root growth, expanded N uptake area, and upregulated the expression of TaNRT1.1, TaNRT2.1, and TaNRT2.2 in wheat seedlings, suggesting that LNP can enhance root N uptake capacity to increase N accumulation in plants. In addition, LNP improved the activity of glutamine synthase (GS) to enhance the capacity of N assimilation of plants. The relative expression of TaGS1 in the lower leaves of priming and stress (PS) was lower than that of no priming and stress (NS) after LNP, indicating that the rate of N transfer from the lower leaves to the upper leaves became slower after LNP, which alleviated the senescence of the lower leaves. The relative expression of TaGS2 was significantly increased, which might be related to the enhanced photorespiratory ammonia assimilation capacity after LNP, which reduced the N loss and maintained higher LNC. Therefore, LNP in the early stage can improve the N absorption and assimilation ability and maintain the normal N supply to alleviate the inhibition of N-deficit stress in wheat seedlings.


Subject(s)
Seedlings , Tetrazoles , Thiazoles , Triticum , Triticum/genetics , Nitrogen/metabolism , Plants/metabolism
5.
Physiol Plant ; 176(2): e14196, 2024.
Article in English | MEDLINE | ID: mdl-38433117

ABSTRACT

Source-sink relationships influence photosynthesis. So far, the limiting factors for photosynthesis of wheat cultivars with different source-sink relationships have not been determined. We aimed to determine the variation patterns of photosynthetic characteristics of wheat cultivars with different source-sink relationships. In this study, two wheat cultivars with different source-sink relationships were selected for photosynthetic physiological analyses. The results showed that YM25 (source-limited cultivar) had higher photosynthetic efficiency compared to YM1 (sink-limited cultivar). This is mainly due to a stronger photochemical efficiency, electron transfer capacity, and Rubisco carboxylation capacity of YM25. YM25 accumulated less soluble carbohydrates in flag leaves than YM1. This is mainly due to the stronger sucrose synthesis and transport capacity of YM25 by presenting higher sucrose-related enzyme activities and gene expression. A PCA analysis showed that Rubisco was the main factor limiting the photosynthetic capacity of YM25. The soluble sugar accumulation in flag leaves and sink limitation decreased the photosynthetic activity of YM1. Increased N application improved source-sink relationships and increased grain yield and source leaf photosynthetic capacity in both two wheat cultivars. Taken together, our findings suggest that Rubisco and sucrose synthesis and translocation are involved in the regulation of photosynthesis of wheat cultivars with different source-sink relationships and that source and sink limitation effects should be considered in photosynthesis.


Subject(s)
Ribulose-Bisphosphate Carboxylase , Triticum , Triticum/genetics , Photosynthesis , Carbohydrate Metabolism , Sucrose
6.
Front Plant Sci ; 15: 1339105, 2024.
Article in English | MEDLINE | ID: mdl-38318495

ABSTRACT

The use of slow-release fertilizers and seed-fertilizers cause localized high-ammonium (NH4 +) environments in agricultural fields, adversely affecting wheat growth and development and delaying its yield. Thus, it is important to investigate the physiological responses of wheat and its tolerance to NH4 + stress to improve the adaptation of wheat to high NH4 + environments. In this study, the physiological mechanisms of ammonium tolerance in wheat (Triticum aestivum) were investigated in depth by comparative analysis of two cultivars: NH4 +-tolerant Xumai25 and NH4 +-sensitive Yangmai20. Cultivation under hydroponic conditions with high NH4 + (5 mM NH4 +, AN) and nitrate (5 mM NO3 -, NN), as control, provided insights into the nuanced responses of both cultivars. Compared to Yangmai20, Xumai25 displayed a comparatively lesser sensitivity to NH4 + stress, as evident by a less pronounced reduction in dry plant biomass and a milder adverse impact on root morphology. Despite similarities in NH4 + efflux and the expression levels of TaAMT1.1 and TaAMT1.2 between the two cultivars, Xumai25 exhibited higher NH4 + influx, while maintaining a lower free NH4 + concentration in the roots. Furthermore, Xumai25 showed a more pronounced increase in the levels of free amino acids, including asparagine, glutamine, and aspartate, suggesting a superior NH4 + assimilation capacity under NH4 + stress compared to Yangmai20. Additionally, the enhanced transcriptional regulation of vacuolar glucose transporter and glucose metabolism under NH4 + stress in Xumai25 contributed to an enhanced carbon skeleton supply, particularly of 2-oxoglutarate and pyruvate. Taken together, our results demonstrate that the NH4 + tolerance of Xumai25 is intricately linked to enhanced glucose metabolism and optimized glucose transport, which contributes to the robust NH4 + assimilation capacity.

7.
Plant Physiol Biochem ; 206: 107850, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38042099

ABSTRACT

Understanding the physiological mechanism underlying nitrogen levels response to a low red/far-red ratio (R/FR) can provide new insights for optimizing wheat yield potential but has been not well documented. This study focused on the changes in nitrogen levels, nitrogen assimilation and nitrate uptake in wheat plants grown with and without additional far-red light. A low R/FR reduced wheat nitrogen accumulation and grain yield compared with the control. The levels of total nitrogen, free amino acid and ammonium were decreased in leaves but nitrate content was temporarily increased under a low R/FR. The nitrate reductase (NR) activity in leaves was more sensitive to a low R/FR than glutamine synthetase, glutamate synthase, glutamic oxalacetic transaminase and glutamic-pyruvic transaminase. Further analysis showed that a low R/FR had little effect on the NR activation state but reduced the level of NR protein and the expression of encoding gene TaNR1.2. Interestingly, a low R/FR rapidly induced TaPIL5 expression rather than TaHY5 and other members of TaPILs in wheat, suggesting that TaPIL5 was the key transcription factor response to a low R/FR in wheat and might be involved in the downregulation of TaNR1.2 expression. Besides, a low R/FR downregulated the expression of TaNR1.2 in leaves earlier than that of TaNRT1.1/1.2/1.5/1.8 in roots, which highlights the importance of NR and nitrogen assimilation in response to a low R/FR. Our results provide revelatory evidence that restricted nitrate reductase associated with downregulated TaNR1.2 and upregulated TaPIL5 mediate the suppression of nitrogen assimilation under a low R/FR in wheat.


Subject(s)
Ammonium Compounds , Triticum , Nitrate Reductase/genetics , Nitrate Reductase/metabolism , Triticum/metabolism , Nitrates/metabolism , Nitrogen/metabolism , Ammonium Compounds/metabolism
8.
Plant Physiol Biochem ; 201: 107880, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37437346

ABSTRACT

Phosphorus (P) deficit limits high wheat (Triticum aestivum L.) yields. Breeding low-P-tolerant cultivars is vital for sustainable agriculture and food security, but the low-P adaptation mechanisms are largely not understood. Two wheat cultivars, ND2419 (low-P-tolerant) and ZM366 (low-P-sensitive) were used in this study. They were grown under hydroponic conditions with low-P (0.015 mM) or normal-P (1 mM). Low-P suppressed biomass accumulation and net photosynthetic rate (A) in both cultivars, whereas ND2419 was relatively less suppressed. Intercellular CO2 concentration did not decrease with the decline of stomatal conductance. Additionally, maximum electron transfer rate (Jmax) decreased sooner than maximum carboxylation rate (Vcmax). Results indicate that impeded electron transfer is directly responsible for decreased A. Under low-P, ND2419 exhibited greater PSII functionality (potential activity (Fv/Fo), maximum quantum efficiency (Fv/Fm), photochemical quenching (qL) and non-photochemical quenching (NPQ) required for electron transfer than ZM366, resulting more ATP for Rubisco activation. Furthermore, ND2419 maintained higher chloroplast Pi concentrations by enhancing chloroplast Pi allocation, compared with ZM366. Overall, the low-P-tolerant cultivar sustained electron transfer under low-P by enhancing chloroplast Pi allocation, allowing more ATP synthesis for Rubisco activation, ultimately presenting stronger photosynthesis capacities. The improved chloroplasts Pi allocation may provide new insights into improve low-P tolerance.


Subject(s)
Ribulose-Bisphosphate Carboxylase , Triticum , Triticum/physiology , Electrons , Plant Breeding , Photosynthesis/physiology , Chloroplasts , Adenosine Triphosphate , Plant Leaves/physiology
9.
J Agric Food Chem ; 71(21): 8150-8163, 2023 May 31.
Article in English | MEDLINE | ID: mdl-37192322

ABSTRACT

The effect of high-molecular weight glutenin subunits (HMW-GSs) on gluten polymerization during biscuit making was investigated using a set of HMW-GS deletion lines. Results showed that the deletion of HMW-GSs improved the biscuit quality compared with the wild type (WT), especially in x-type HMW-GS deletion lines. Slight gluten depolymerization was observed during dough mixing, while progressive gluten polymerization occurred during biscuit baking. The deletion of HMW-GSs suppressed the polymerization of glutenin and gliadin compared with the WT during biscuit baking, especially in x-type HMW-GS deletion lines. These actions resulted in less elevation of the intermolecular ß-sheet and ordered α-helix and altering the disulfide (SS) conformation to a less stable conformation in HMW-GS deletion lines compared with the WT during baking. Molecular dynamics simulation analysis further demonstrated that x-type HMW-GSs had higher thermal stability compared with y-type HMW-GSs during heating.


Subject(s)
Food , Triticum , Cooking , Cysteine/chemistry , Hydrogen Bonding , Molecular Weight , Polymerization , Protein Structure, Secondary , Protein Subunits/chemistry , Triticum/chemistry , Molecular Dynamics Simulation
10.
Physiol Plant ; 175(2): e13907, 2023 Mar.
Article in English | MEDLINE | ID: mdl-37039612

ABSTRACT

Drought stress is one of the most serious environmental stress factor constraining crop production across the globe. Among cereals, wheat grains are very sensitive to drought as a small degree of stress can affect the enzymatic system. This study aimed to investigate whether nitrogen and pre-anthesis drought priming could enhance the action of major regulatory enzymes involved in starch accumulation and protein synthesis in bread wheat (Triticum aestivum L.). For this purpose, cultivars YM-158 (medium gluten) and YM-22 (low gluten) were grown in rain-controlled conditions under two nitrogen levels, that is, N180 (N1) and N300 (N2). Drought priming was applied at the jointing stage and drought stress was applied 7 days after anthesis. Drought stress reduced starch content but enhanced protein content in grains. N2 and primed plants kept higher contents of nonstructural carbohydrates, fructans, and sucrose; with higher activity of sucrose-phosphate synthase in flag leaves. Furthermore, N2 and priming treatments showed higher sink ability to develop grains by showing higher sucrose-to-starch conversion activities of adenosine diphosphate-glucose pyrophosphorylase, uridine diphosphate glucose pyrophosphorylase, sucrose-synthase, soluble-starch synthase, starch branching enzyme, and granule-bound starch synthase as compared to N1 and non-primed treatments. The application of N2 and primed treatment showed a greater ability to maintain grain filling in both cultivars as compared to N1 and non-primed crops. Our study suggested that high nitrogen has the potential to enhance the effect of pre-drought priming to change source-sink relationships and grain yield of wheat under drought stress during the filling process.


Subject(s)
Nitrogen , Starch , Triticum , Droughts , Edible Grain/metabolism , Glutens/metabolism , Glutens/pharmacology , Nitrogen/metabolism , Starch/metabolism , Sucrose/metabolism , Triticum/physiology
11.
J Agric Food Chem ; 71(12): 4943-4956, 2023 Mar 29.
Article in English | MEDLINE | ID: mdl-36924464

ABSTRACT

A set of high-molecular-weight glutenin subunit (HMW-GS) deletion lines were used to investigate the influences of HMW-GS on wheat gluten, and dough properties were investigated using a set of HMW-GS deletion lines. Results showed that HMW-GS deletion significantly decreased the dough stability time, as well as viscoelastic moduli (G' and G″), compared with the wild type, where the deletion of x-type HMW-GSs (Ax1d, Bx7d, and Dy12d) decreased more than y-type HMW-GSs (By8d and Dy12d). The deletion of HMW-GS significantly decreased HMW-GS contents and increased α-/γ-gliadin contents. A proteomic study showed that the HMW-GS deletion down-regulated the HMW-GS, ß-amylase, serpins, and protein disulfide isomerase and up-regulated the LMW-GS, α/γ-gliadin, and α-amylase inhibitor. Meanwhile, HMW-GS deletion significantly decreased contents of ß-turn and ß-sheet. In addition, less energetically stable disulfide conformations (trans-gauche-gauche and trans-gauche-trans) were abundant in HMW-GS deletion lines. Furthermore, analysis of five HMW-GSs based on amino acid sequences proved that Dx2 and Bx7 had a more stable structure, followed by Ax1, then Dy12, and finally By8.


Subject(s)
Gliadin , Triticum , Gliadin/metabolism , Triticum/chemistry , Proteomics , Glutens/chemistry , Molecular Weight
12.
Environ Sci Pollut Res Int ; 30(17): 50743-50758, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36797388

ABSTRACT

The endogenous stimulating molecule melatonin (N-acetyl-5-methoxytryptamine, MT) has an important function in mitigating the impact of multiple abiotic stressors. However, the ameliorating effect of MT on chromium (Cr) stress and its mechanisms remains unclear. Therefore, the present study aimed to clarify the mitigating effect of exogenous MT (0 µM and 100 µM) on wheat seedlings under Cr (0 µM and 50 µM) stress stemming from the growth and physiological characteristics, phytochelatin (PC) biosynthesis, Cr subcellular distribution, and antioxidant system of the plants in these treatments. The results showed that endogenous MT application significantly promoted plant growth and improved root morphology of wheat seedlings under Cr stress due to decreased Cr and reactive oxygen species (ROS) accumulation in both roots and leaves. Accumulation and transport of Cr from roots to leaves were reduced by MT, because enhanced vacuolar sequestration via upregulated PC accumulation, took place, derived from the fact that MT upregulated the expression of key genes for PC synthesis (TaPCS and Taγ-ECS). Furthermore, MT pre-treatment alleviated Cr-induced oxidative damage by diminishing lipid peroxidation and cell apoptosis, profiting from the enhanced scavenging ability of ROS as a result of the MT-induced increase in the activities of superoxide dismutase, catalase, ascorbate peroxidase, and glutathione reductase, and the related encoding gene expression levels of TaSOD2, TaCAT, TaAPX, and TaGR. In conclusion, endogenous MT application improved the growth traits, antioxidant system, and decreased Cr accumulation especially at the leaf level in wheat seedlings under Cr stress mainly through enhancing antioxidant enzyme activities and altering Cr subcellular distribution via strengthening PC biosynthesis. The mechanisms of MT-induced plant tolerance to Cr stress could help develop new strategies for secure crop production in Cr-polluted soils.


Subject(s)
Antioxidants , Melatonin , Antioxidants/metabolism , Melatonin/pharmacology , Melatonin/metabolism , Seedlings , Triticum/metabolism , Reactive Oxygen Species/metabolism , Chromium/toxicity , Chromium/metabolism , Oxidative Stress , Hydrogen Peroxide/metabolism
13.
Plants (Basel) ; 13(1)2023 Dec 27.
Article in English | MEDLINE | ID: mdl-38202394

ABSTRACT

The impact of ammonium (NH4+) stress on plant growth varies across species and cultivars, necessitating an in-depth exploration of the underlying response mechanisms. This study delves into elucidating the photosynthetic responses and differences in tolerance to NH4+ stress by investigating the effects on two wheat (Triticum aestivum L.) cultivars, Xumai25 (NH4+-less sensitive) and Yangmai20 (NH4+-sensitive). The cultivars were grown under hydroponic conditions with either sole ammonium nitrogen (NH4+, AN) or nitrate nitrogen (NO3-, NN) as the nitrogen source. NH4+ stress exerted a profound inhibitory effect on seedling growth and photosynthesis in wheat. However, these effects were less pronounced in Xumai25 than in Yangmai20. Dynamic photosynthetic analysis revealed that the suppression in photosynthesis was primarily attributed to stomatal limitation associated with a decrease in leaf water status and osmotic potential. Compared to Yangmai20, Xumai25 exhibited a significantly higher leaf K+ concentration and TaAKT1 upregulation, leading to a stronger stomatal opening and, consequently, a better photosynthetic performance under NH4+ stress. In conclusion, our study suggested stomatal limitation as the primary factor restricting photosynthesis under NH4+ stress. Furthermore, we demonstrated that improved regulation of osmotic substances contributed to higher stomatal conductance and enhanced photosynthetic performance in Xumai25.

14.
Front Plant Sci ; 13: 971003, 2022.
Article in English | MEDLINE | ID: mdl-36570939

ABSTRACT

Shoot branching is inhibited by a low red/far-red ratio (R/FR). Prior studies have shown that the R/FR suppressed Arabidopsis thaliana branching by promotes bud abscisic acid (ABA) accumulation directly. Given that wheat tiller buds are wrapped in leaf sheaths and may not respond rapidly to a R/FR, systemic cytokinin (CTK) may be more critical. Here, systemic hormonal signals including indole-3-acetic acid (IAA), gibberellins (GA) and CTK and bud ABA signals in wheat were tested under a low R/FR. The results showed that a low R/FR reduced the percentage of tiller occurrence of tiller IV and the tiller number per plant. The low R/FR did not rapidly induced ABA accumulation in the tiller IV because of the protection of the leaf sheath and had little effect on IAA content and signaling in the tiller nodes. The significant change in the CTK levels was observed earlier than those of other hormone (ABA, IAA and GA) and exogenous cytokinin restored the CTK levels and tiller number per plant under low R/FR conditions. Further analysis revealed that the decrease in cytokinin levels was mainly associated with upregulation of cytokinin degradation genes (TaCKX5, TaCKX11) in tiller nodes. In addition, exposure to a decreased R/FR upregulated the expression of GA biosynthesis genes (TaGA20ox1, TaGA3ox2), resulting in elevated GA levels, which might further promote CTK degradation in tiller nodes and inhibit tillering. Therefore, our results provide evidence that the enhancement of cytokinin degradation is a novel mechanism underlying the wheat tillering response to a low R/FR.

15.
Plants (Basel) ; 11(15)2022 Jul 28.
Article in English | MEDLINE | ID: mdl-35956447

ABSTRACT

With global climate change, waterlogging stress is becoming more frequent. Waterlogging stress inhibits root growth and physiological metabolism, which ultimately leads to yield loss in wheat. Waterlogging priming has been proven to effectively enhance waterlogging tolerance in wheat. However, it is not known whether waterlogging priming can improve the offspring's waterlogging resistance. Here, wheat seeds that applied waterlogging priming for one generation, two generations and three generations are separately used to test the hypoxia stress tolerance in wheat, and the physiological mechanisms are evaluated. Results found that progeny of primed plants showed higher plant biomass by enhancing the net photosynthetic rate and antioxidant enzyme activity. Consequently, more sugars are transported to roots, providing a metabolic substrate for anaerobic respiration and producing more ATP to maintain the root growth in the progeny of primed plants compared with non-primed plants. Furthermore, primed plants' offspring promote ethylene biosynthesis and further induce the formation of a higher rate of aerenchyma in roots. This study provides a theoretical basis for improving the waterlogging tolerance of wheat.

16.
Front Plant Sci ; 13: 965996, 2022.
Article in English | MEDLINE | ID: mdl-36035683

ABSTRACT

Water and nitrogen (N) deficiencies are the major limitations to crop production, particularly when they occur simultaneously. By supporting metabolism, even when tissue water capacity is lower, nitrogen and priming may reduce drought pressure on plants. Therefore, the current study investigates the impact of nitrogen and priming on wheat to minimize post-anthesis drought stress. Plant morphology, physiology, and biochemical changes were observed before, during, and after stress at the post-anthesis stage. The plants were exposed to three water levels, i.e., well watering (WW), water deficit (WD), and priming at jointing and water deficit (PJWD) at the post-anthesis stage, and two different nitrogen levels, i.e., N180 (N1) and N300 (N2). Nitrogen was applied in three splits, namely, sowing, jointing, and booting stages. The results showed that the photosynthesis of plants with N1 was significantly reduced under drought stress. Moreover, drought stress affected chlorophyll (Chl) fluorescence and water-related parameters (osmotic potential, leaf water potential, and relative water content), grain filling duration (GFD), and grain yield. In contrast, PJWD couple with high nitrogen treatment (N300 kg ha-1) induced the antioxidant activity of peroxidase (37.5%), superoxide dismutase (29.64%), and catalase (65.66%) in flag leaves, whereas the levels of hydrogen peroxide (H2O2) and superoxide anion radical (O2 -) declined by 58.56 and 66.64%, respectively. However, during the drought period, the primed plants under high nitrogen treatment (N300 kg ha-1) maintained higher Chl content, leaf water potential, and lowered lipid peroxidation (61%) (related to higher activities of ascorbate peroxidase and superoxide dismutase). Plants under high nitrogen treatment (N300 kg ha-1) showed deferred senescence, improved GFD, and grain yield. Consequently, the research showed that high nitrogen dose (N300 kg ha-1) played a synergistic role in enhancing the drought tolerance effects of priming under post-anthesis drought stress in wheat.

17.
Plants (Basel) ; 11(13)2022 Jun 30.
Article in English | MEDLINE | ID: mdl-35807696

ABSTRACT

Nitrogen (N) supply and seed rate (SR) are two essential factors that affect the accumulation and partitioning of N and dry matter (DM) and, therefore, grain yield (GY) and N use efficiency (NUE). The objective of this experiment was to optimize N application and SR to regulate wheat growth and increase both GY and NUE. The results revealed that net photosynthetic rate (Pn), stomatal conductance (Gs), chlorophyll content, and activities of metabolic enzymes (NR and GS) significantly increased with increasing of N levels while decreasing SR. Plant tillers, GY, DM before anthesis, and N translocation, N agronomic efficiency (NAE), N recovery efficiency (NRE), and N uptake efficiency (NUPE) were highest in a combined treatment of N235 and SR180. However, N levels beyond 235 kg ha-1 significantly decreased NAE, NRE, and NUPE. By increasing SR from 135 to 180 kg ha-1 an increase of 12.9 % and 9.1% GY and NUPE, respectively, was observed. Based on this result, we estimate that 1 kg N ha-1 might be replaced by an increase of approximately 0.6 kg ha-1 SR. Our study suggested that using a combination of N and SR (N235 + SR180) could attain maximum GY and improve NUE parameters.

18.
Front Plant Sci ; 13: 829229, 2022.
Article in English | MEDLINE | ID: mdl-35419013

ABSTRACT

Starch plays an important role in food industry. In this study, three wheat cultivars with different protein contents were used to investigate the different ratios of starch addition on starch pasting properties, starch thermal performance, dough rheology, biscuit quality, and their relationships. Results showed that with the increase in starch content, gluten, protein and glutenin macropolymer (GMP), lactic acid solvent retention capacity (SRC), sucrose SRC, and onset temperature (To) decreased, while most pasting parameters and gelatinization enthalpy (ΔH) increased. Viscosity parameters were significantly negatively correlated with dough stability time, farinograph quality number (FQN), and sucrose SRC. Biscuit quality was improved by starch addition, indicated by lower thickness and hardness, higher diameter, spread ratio, and sensory score. Viscosity parameters were positively correlated to diameter, spread ratio, and sensory score of biscuit, while negatively correlated to hardness and thickness of biscuit. Image analysis showed that the crumbs of biscuit were improved as shown by bigger pores in the bottom side. The results provide useful information for the clarification of the role of starch in determining biscuit quality and the inter-relationships of flour, dough, and biscuit.

19.
J Agric Food Chem ; 70(7): 2146-2159, 2022 Feb 23.
Article in English | MEDLINE | ID: mdl-35142500

ABSTRACT

In a 2 yr field experiment, we investigated the combined effects of reduced nitrogen (N) rate and increased plant density on the trade-off between the grain protein content (GPC) and the grain yield (GY) in soft wheat cultivars. Reducing N application significantly decreased both GPC and GY; however, to some extent, increasing the top-dressed N ratio and plant density compensated for the GY loss. Optimizing the combination of these three factors (150 kg N ha-1 with 50% top-dressed N and 360 × 104 plants ha-1) achieved both the required lower GPC for soft wheat and relatively higher GY compared with the conventional cultivation strategy. In addition, this optimized combination downregulated 11 high-molecular-weight glutenin subunits, 8 low-molecular-weight glutenin subunits, 5 α/ß-gliadins, and 2 γ-gliadins in mature grains as identified by data-independent acquisition mass spectrometry. Further analysis indicated that the relatively lower free amino acid content and downregulated expressions of the seed storage protein (SSP) synthesis-related genes in filling grains contributed to the reduction of SSP and GPC. Furthermore, the dilution effect induced by a relatively higher accumulation of starch than proteins also partially explained the reduced GPC. Unlike proteins, grain starch accumulation and content depended more on the soluble sugar availability, rather than on the starch synthesis capacity. These findings provide novel insights on simultaneous improvement in the grain quality and yield of soft wheat through synchronized manipulations of N fertilization and plant density.


Subject(s)
Nitrogen , Triticum , Amino Acids/metabolism , Edible Grain/chemistry , Gene Expression , Nitrogen/metabolism , Plant Proteins/metabolism , Triticum/chemistry
20.
Foods ; 11(20)2022 Oct 18.
Article in English | MEDLINE | ID: mdl-37430998

ABSTRACT

The aim of this study was to test the significant effects of inorganic sulfur and cysteine on grain protein and flour quality in wheat and to provide a theoretical basis of wheat cultivation techniques with high yield and quality. In the field experiment, a winter wheat cultivar, Yangmai 16, was used, and five treatments were established, i.e., S0 (no sulfur fertilizer application during the whole wheat growth period), S(B)60 (60 kg ha-1 inorganic sulfur fertilizer was applied as the basal fertilizer), Cys(B)60 (60 kg ha-1 cysteine sulfur fertilizer was applied as the basal fertilizer), S(J)60 (60 kg ha-1 inorganic sulfur fertilizer was applied as the jointing fertilizer), and Cys(J)60 (60 kg ha-1 cysteine sulfur fertilizer was applied as the jointing fertilizer). The fertilizer application at jointing stage showed a better influence than basal fertilizer application on protein quality; for the content of albumin, gliadin, and high molecular weight glutenin (HMW-GS), Cys(J)60 was the best among these treatments. An increase of 7.9%, 24.4%, 43.5%, 22.7% and 36.4% was found in grain yield, glutenin content, glutenin macro-polymer (GMP), low molecular weight glutenin (LMW-GS), and S content under Cys(J)60, in relation to the control, respectively. A similar trend was found in the end-use quality, as exemplified by an increase of 38.6%, 10.9%, 60.5%, and 109.8% in wet gluten content, dry gluten content, sedimentation volume, and bread-specific volume, respectively; a decrease of 69.3% and 69.1% in bread hardness and bread chewiness was found under Cys(J)60. In terms of application period, topdressing at jointing stage is compared with base fertilizer, the sulfur fertilizer application at jointing stage showed larger effects on grain protein and flour quality, from the different types of sulfur fertilizer, the application of cysteine performed better than the use of inorganic sulfur. The Cys(J)60 exhibited the best effects on protein and flour quality. It was suggested that sufficient sulfur application at jointing stage has the potential to enhance the grain protein and flour quality.

SELECTION OF CITATIONS
SEARCH DETAIL
...