Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Cancer Immunol Immunother ; 73(10): 208, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39110249

ABSTRACT

Immunotherapy for pancreatic ductal carcinoma (PDAC) remains disappointing due to the repressive tumor microenvironment and T cell exhaustion, in which the roles of interferon-stimulated genes were largely unknown. Here, we focused on a typical interferon-stimulated gene, GBP4, and investigated its potential diagnostic and therapeutic value in pancreatic cancer. Expression analysis on both local samples and public databases indicated that GBP4 was one of the most dominant GBP family members present in the PDAC microenvironment, and the expression level of GBP4 was negatively associated with patient survival. We then identified DNA hypo-methylation in regulatory regions of GBP4 in PDAC, and validated its regulatory role on GBP4 expression via performing targeted methylation using dCas9-SunTag-DNMAT3A-sgRNA-targeted methylation system on selected DNA locus. After that, we investigated the downstream functions of GBP4, and chemotaxis assays indicated that GBP4 overexpression significantly improved the infiltration of CD8+T cells, but also induced upregulation of immune checkpoint genes and T cell exhaustion. Lastly, in vitro T cell killing assays using primary organoids suggested that the PDAC samples with high level of GBP4 expression displayed significantly higher sensitivity to anti-PD-1 treatment. Taken together, our studies revealed the expression patterns and epigenetic regulatory mechanisms of GBP4 in pancreatic cancer and clarified the effects of GBP4 on T cell exhaustion and antitumor immunology.


Subject(s)
DNA Methylation , Gene Expression Regulation, Neoplastic , Pancreatic Neoplasms , Tumor Microenvironment , Humans , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/metabolism , Tumor Microenvironment/immunology , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/immunology , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/metabolism , Cell Line, Tumor , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Mice , Animals , T-Cell Exhaustion
2.
Biochim Biophys Acta Mol Basis Dis ; 1870(7): 167346, 2024 10.
Article in English | MEDLINE | ID: mdl-38986820

ABSTRACT

PDAC is a typical "cold tumor" characterized by low immune cell infiltration and a suppressive immune microenvironment. We previously observed the existence of a rare group of follicular helper T cells (Tfh) that could enhance antitumor immune responses by recruiting other immune cells in PDAC. In this study, we ectopically expressed BCL6 in CD4+ T cells, and successfully induced Tfh-like transdifferentiation in vitro. This strategy provided abundant Tfh-like cells (iTfhs) that can recruit CD8+ T cells like endogenous Tfhs. Subsequently, Chimeric Antigen Receptors (CARs) against both MSL (Mesothelin) and EPHA2 (Ephrin receptor A2) were used to modify iTfh cells, and the CAR-iTfh cells significantly improved infiltration and antitumor cytotoxicity of co-cultured CD8+ T cells. After that, combinatory administration of CAR-iTfh & CAR-CD8 T cell therapy displayed a better effect in repressing the PDAC tumors in xenograft mouse models, compared to conventional CAR-CD4 & CAR-CD8 combinations, and the models received the CAR-iTfh & CAR-CD8 T cells displayed a significantly improved survival rate. Our study revealed the plasticity of Thelper differentiation, expanded the source of Tfh-like cells for cell therapy, and demonstrated a novel and potentially more efficient cellular composition for CAR-T therapy.


Subject(s)
Cell Transdifferentiation , Immunotherapy, Adoptive , Pancreatic Neoplasms , Proto-Oncogene Proteins c-bcl-6 , Receptors, Chimeric Antigen , Animals , Humans , Pancreatic Neoplasms/therapy , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/pathology , Mice , Immunotherapy, Adoptive/methods , Proto-Oncogene Proteins c-bcl-6/genetics , Proto-Oncogene Proteins c-bcl-6/metabolism , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/metabolism , Cell Transdifferentiation/immunology , CD4-Positive T-Lymphocytes/immunology , Xenograft Model Antitumor Assays , CD8-Positive T-Lymphocytes/immunology , Cell Line, Tumor , Tumor Microenvironment/immunology , Receptor, EphA2/immunology , Receptor, EphA2/genetics , T-Lymphocytes, Helper-Inducer/immunology , Female
3.
Cancer Immunol Immunother ; 73(4): 61, 2024 Mar 02.
Article in English | MEDLINE | ID: mdl-38430267

ABSTRACT

BACKGROUND: Recent progressions in CAR-T cell therapy against pancreatic ductal adenocarcinoma (PDAC) remain disappointing, which are partially attributed to the immunosuppressive microenvironment including macrophage-mediated T cell repletion. METHODS: We first characterized the expression patterns of macrophage-relevant chemokines and identified CXCR2 as the key factor regulating T cell trafficking and tumor-specific accumulation in PDAC microenvironment. After that, we synthesized and introduced a CXCR2 expression cascade into Claudin18.2 CAR-T cells and compared the behaviors of CAR-T cells in vitro and in vivo. The therapeutic potential of CXCR2 CAR-T was evaluated in two different allogeneic models: subcutaneous allografts and metastatic PDAC models. RESULTS: The results showed that CXCR2 CAR-T not only reduced the size of allografted PDAC tumors, but also completely eliminated the formation of metastases. Lastly, we investigated the tumor tissues and found that expression of ectopic CXCR2 significantly improved tumor-targeted infiltration and residence of T cells and reduced the presence of MDSCs and CXCR2 + macrophages in PDAC microenvironment. CONCLUSION: Our studies suggested that ectopic CXCR2 played a significant and promising role in improving the efficiency of CAR-T therapy against primary and metastatic PDAC and partially reversed the immune-suppressive microenvironment.


Subject(s)
Adenocarcinoma , Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Receptors, Chimeric Antigen , Humans , Pancreatic Neoplasms/therapy , Carcinoma, Pancreatic Ductal/therapy , Disease Progression , Tumor Microenvironment
4.
Cancer Lett ; 588: 216741, 2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38395378

ABSTRACT

Characterization of tumor-responsive T cell receptors (TCRs) is a critical step in personalized TCR-T cell therapy, and remains challenging for pancreatic ductal adenocarcinoma (PDAC). Here we report a proof-of-concept study to identify and validate antitumor TCRs in two representative PDAC patients using ultradeep single-cell TCR/RNA sequencing and autologous organoids, and reveal the phenotypic dynamics of TCR repertoire in different T cell expansions from the same patient. We first performed comparative sequencing on freshly harvested peripheral blood mononuclear cells (PBMCs) and uncultured tumor infiltrating lymphocytes (TILs), followed by reactivity tests of TIL-enriched TCRs with autologous organoids, in which two tumor-responsive TCRs were successfully characterized and the corresponding TILs were mostly tissue-resident memory-like T cells, and partially expressed both naïve and exhausted T cell markers. For the PDAC patient without high-quality TILs, PBMCs were cultured with neoantigen peptide (KRASG12D), organoids, or anti-CD3 antibody in presence, and experienced extensive clonal expansions within ten days. All derived PBMCs were sequenced in parallel (>82,000 cells), and TCRs enriched in both peptide- and organoid-experienced, but not anti-CD3-treated CD8 T cells, were assessed for their reactivity to antigen-presenting cells (APCs) and organoids, in which three neoantigen-reactive TCRs were identified as tumor-responsive, and the corresponding T cells were characterized by mixed transcriptional signatures including but not limited to typical exhausted T cell markers. Together, our study revealed that the combination of ultradeep single-cell sequencing and organoid techniques enabled rapid characterization of tumor-responsive TCRs for developing practical personalized TCR-T therapy in an antigen/human leukocyte antigen (HLA)-agnostic manner.


Subject(s)
Pancreatic Neoplasms , Receptors, Antigen, T-Cell , Humans , Receptors, Antigen, T-Cell/genetics , Lymphocytes, Tumor-Infiltrating , CD8-Positive T-Lymphocytes , Antigens, Neoplasm/genetics , HLA Antigens , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/therapy , CD3 Complex , Histocompatibility Antigens Class II , Peptides , Organoids
5.
J Immunother Cancer ; 11(6)2023 06.
Article in English | MEDLINE | ID: mdl-37364934

ABSTRACT

BACKGROUND: Tumor-associated tertiary lymphoid structures (TLSs) are functional immune-responsive niches that are not fully understood in pancreatic ductal adenocarcinoma (PDAC). METHODS: Fluorescent multiplex immunohistochemistry was performed on sequential sections of surgically resected tumor tissues from 380 PDAC patients without preoperative treatment (surgery alone (SA)) and 136 patients pretreated with neoadjuvant treatment (NAT). Multispectral images were processed via machine learning and image processing platforms, inForm V.2.4 and HALO V.3.2; TLS regions were segmented, and the cells were identified and quantified. The cellular composition and immunological properties of TLSs and their adjacent tissues in PDAC were scored and compared, and their association with prognosis was further examined. RESULTS: Intratumoral TLSs were identified in 21.1% (80/380) of patients in the SA group and 15.4% (21/136) of patients in the NAT group. In the SA group, the presence of intratumoral TLSs was significantly associated with improved overall survival (OS) and progression-free survival. The existence of intratumoral TLSs was correlated with elevated levels of infiltrating CD8+T, CD4+T, B cells and activated immune cells in adjacent tissues. A nomogram model was generated with TLS presence as a variable, which successfully predicted PDAC patient OS in an external validation cohort (n=123). In the NAT group, samples exhibited a lower proportion of B cells and a higher proportion of regulatory T cells within intratumoral TLSs. Additionally, these TLSs were smaller in size, with a lower overall maturation level and reduced immune cell activation, and the prognostic value of TLS presence was insignificant in the NAT cohort. CONCLUSION: Our study systematically revealed the cellular properties and prognostic values of intratumoral TLSs in PDAC and described the potential impact of NAT on TLS development and function.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Tertiary Lymphoid Structures , Humans , Prognosis , Pancreatic Neoplasms/pathology , Carcinoma, Pancreatic Ductal/pathology , Pancreatic Neoplasms
6.
Acta Biochim Biophys Sin (Shanghai) ; 55(8): 1288-1300, 2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36942991

ABSTRACT

Ferroptosis is a type of programmed cell death closely related to amino acid metabolism. Pancreatic cancer cells have a strong dependence on glutamine, which serves as a carbon and nitrogen substrate to sustain rapid growth. Glutamine also aids in self-protection mechanisms. However, the effect of glutamine on ferroptosis in pancreatic cancer remains largely unknown. Here, we aim to explore the association between ferroptosis and glutamine deprivation in pancreatic cancer. The growth of pancreatic cancer cells in culture media with or without glutamine is evaluated using Cell Counting Kit-8. Reactive oxygen species (ROS) are measured by 2',7'-dichlorodihydrofluorescein diacetate staining. Ferroptosis is assessed by BODIPY-C11 dye using confocal microscopy and flow cytometry. Amino acid concentrations are measured using ultrahigh-performance liquid chromatography-tandem mass spectrometry. Isotope-labelled metabolic flux analysis is performed to track the metabolic flow of glutamine. Additionally, RNA sequencing is performed to analyse the genetic alterations. Glutamine deprivation inhibits pancreatic cancer growth and induces ferroptosis both in vitro and in vivo. Additionally, glutamine decreases ROS formation via glutathione production in pancreatic cancer cells. Interestingly, glutamine inhibitors (diazooxonorleucine and azaserine) promotes ROS formation and ferroptosis in pancreatic cancer cells. Furthermore, ferrostatin, a ferroptosis inhibitor, rescues ferroptosis in pancreatic cancer cells. Glutamine deprivation leads to changes in molecular pathways, including cytokine-cytokine receptor interaction pathways ( CCL5, CCR4, LTA, CXCR4, IL-6R, and IL-7R). Thus, exogenous glutamine is required for the detoxification of ROS in pancreatic cancer cells, thereby preventing ferroptosis.


Subject(s)
Ferroptosis , Pancreatic Neoplasms , Humans , Glutamine/metabolism , Reactive Oxygen Species/metabolism , Apoptosis , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms
7.
Curr Oncol ; 30(2): 1648-1662, 2023 01 29.
Article in English | MEDLINE | ID: mdl-36826087

ABSTRACT

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is the most prevalent subtype of pancreatic cancer and one of the most malignant tumors worldwide. Due to the heterogeneity of its genomics and proteomics, the prognosis of PDAC remains disappointing despite advances in surgery and medicines. Recently, a novel form of programmed cell death, cuproptosis, was proposed, although its role in PDAC has not been investigated. This study aimed to quantify the expression of cuproptosis-related genes and characterize the novel subtypes of PDAC. METHODS: To evaluate the pattern of cuproptosis in PDAC, the gene expression data and clinical information of 372 samples were collected from the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. A consensus cluster analysis was performed using the transcriptional levels, genetic alterations, and individual prognostic values of seven pre-selected cuproptosis-related genes (DLAT, LIPT1, FDX1, DLD, PDHB, PDHA1, and LIAS) to identify the novel subtypes associated with cuproptosis in PDAC. A univariate Cox regression analysis was used to determine the significant prognostic indicators and cuproptosis scores among the differentially expressed genes (DEGs) between the dividing subclusters, followed by a principal component analysis. The prognostic values, immune profiles, treatment sensitivities, and cuproptosis scores were evaluated between the different subgroups. RESULTS: Seven cuproptosis-related genes showed aberrant expression levels and genetic alterations in the PDAC tumor microenvironment. Among them, LIPT1, LIAS, DLAT, PDHA1, and DLD were significantly correlated with overall survival. Based on the expression profiles of the seven cuproptosis-related genes, three cuproptosis clusters (Clusters A, B, and C) were identified, which were represented by different clinicopathologic features, gene expression levels, and biological processes. A total of 686 DEGs were identified among the three cuproptosis clusters, of which 35 prognosis-related DEGs were selected to further classify the PDAC samples into two subgroups with different survival rates, clinicopathologic features, immune infiltration levels, and drug sensitivities. Higher cuproptosis scores were associated with a significantly poorer prognosis. CONCLUSION: The cuproptosis subtypes, scores, and relevant genes represent valuable information for assessing the heterogeneity, treatment, and prognosis of PDAC.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Apoptosis , Consensus , Tumor Microenvironment , Pancreatic Neoplasms
8.
Cancers (Basel) ; 15(3)2023 Jan 29.
Article in English | MEDLINE | ID: mdl-36765788

ABSTRACT

The role of estrogen signaling in antitumor immunology remains unknown for non-traditional sex-biased cancer types such as pancreatic adenocarcinoma (PAAD). Tertiary lymphoid structures (TLS) are active zones composed of multiple types of immune cells, whose presence indicates anti-tumor immune responses. In this study, we employed a 12-chemokine signature to characterize potential gene categories associated with TLS development and identified seventeen major gene categories including estrogen receptors (ERs). Immunohistochemistry staining revealed the expression patterns of three ERs (ERα, ERß, and GPER) in 174 PAAD samples, and their correlation with clinicopathological characteristics, immune cell infiltration levels, and intratumoral TLS presence was analyzed. The results indicated that ERα (+) and ERß (+) were correlated with high tumor grade, and ERß (+) and GPER (+) were correlated with lower TNM stage, and both ERα (+) and GPER (+) displayed a beneficial effect on prognosis in this cohort. Interestingly, positive staining of all three ERs was significantly correlated with the presence of intratumoral TLSs and infiltration of more active immune cells into the microenvironment. Moreover, the chemotaxis of CD8+T-cells to PAAD cells was significantly increased in vitro with upregulated expression of ERα or ERß on PAAD cells. To conclude, our study showed a novel correlation between ER expression and TLS development, suggesting that ERs may play a protective role by enhancing anti-tumor immune responses in PAAD.

9.
J Immunol Res ; 2022: 7353572, 2022.
Article in English | MEDLINE | ID: mdl-35910854

ABSTRACT

Background: Pancreatic ductal adenocarcinoma (PDAC) displays a typical mucin expression pattern which is characterized by MUC1 positive, MUC2 negative, and MUC5AC positive. More and more evidences show that mucins are involved in the development of pancreatic diseases. However, the relationship between mucin expression and prognosis of PDAC patients has been controversial in the past decades; therefore, we aim to figure out the association of mucin expression with survival in PDAC patients who underwent radical resection. Methods: We performed immunohistochemistry (IHC) to detect the expression of MUC1, MUC2, and MUC5AC in resected PDAC specimens from Shanghai Cancer Center, Fudan University (FUSCC, n = 427) and obtained the corresponding clinical statistical data for retrospective study. Kaplan-Meier methods and Mantel-Cox tests were used to compare the survival curves, and the Cox regression model was employed for multivariate analyses to determine the independent risk factors. Survival analysis was also performed in the Queensland Centre for Medical Genomics (QCMG, n = 70) PDAC cohort to verify the conclusion. Results: Both the FUSCC cohort and the QCMG cohort demonstrated that MUC1 absence was significantly correlated with worse overall survival (OS). The presence of MUC2 showed marginal significance in predicting shorter OS of PDAC patients, while MUC5AC had no prognostic value. In the FUSCC cohort, MUC1 absence was associated with increased proportion of stage III PDAC (p = 0.011), and MUC1 absence and MUC2 presence were associated with tumour perineural aggression (p = 0.011 and p = 0.030, respectively). Multivariable adjusted hazard ratios (HRs) for mortality of MUC1 and MUC2 were 0.492 (95% CI: 0.274-0.883, p = 0.017) and 1.596 (95% CI: 1.061-2.401, p = 0.025), respectively. Conclusions: MUC1 absence or MUC2 presence is independently associated with poor OS among patients with resectable PDAC. MUC5AC absence tended to be associated with short-term death.


Subject(s)
Adenocarcinoma , Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Adenocarcinoma/metabolism , Biomarkers, Tumor , Carcinoma, Pancreatic Ductal/surgery , China , Humans , Pancreatic Neoplasms/diagnosis , Prognosis , Retrospective Studies , Pancreatic Neoplasms
10.
Oncogenesis ; 11(1): 35, 2022 Jun 24.
Article in English | MEDLINE | ID: mdl-35750693

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is a well-known lethal and heterogeneous disease. Apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like (APOBEC) is an important mutagenic driver that has seldom been investigated in PDAC. Therefore, this study investigated the significance of APOBEC3C in PDAC. First, cytosine deamination-associated mutation signatures were identified in the PDAC cohorts from TCGA and Fudan University Shanghai Cancer Center (FUSCC) datasets, and C > X-enriched kataegis regions were identified in the FUSCC cohort (12 to 27 counts per sample). Patients were stratified according to APOBEC3C expression, and high APOBEC3C expression was found to correlate with a higher motif enrichment score of 5'-CC-3' and an elevated kataegis count within PCSK5 and NES genes. Second, we compared APOBEC expression in PDAC and normal pancreatic tissues and found that APOBEC3C was substantially upregulated in PDAC. APOBEC3C-overexpressing cell lines were generated to substantiate the effects of APOBEC3C on PDAC genome, including alterations in single-nucleotide variant (SNV) classes (higher proportion of C > T conversions) and the formation of kataegis regions (newly occurring kataegis regions detected in ACHE and MUC6 genes). Three different PDAC cohorts (FUSCC, TCGA, and QCMG) were analysed to evaluate the prognostic value of APOBEC3C, and APOBEC3C overexpression predicted shorter survival. Finally, the APOBEC3C overexpression correalted with the PDAC tumour microenvironment (TME) remodelling, APOBEC3C expression was associated with the invasion of CD4 + T lymphocytes and CD8 + T lymphocytes (cytotoxic T lymphocytes, CTLs), indicating enhanced immune activity and validating the practicality of APOBEC3C for guiding immunotherapy.

SELECTION OF CITATIONS
SEARCH DETAIL