Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters










Publication year range
1.
Inorg Chem ; 63(8): 3835-3842, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38349821

ABSTRACT

Optical thermometry has gained significant attention due to its remarkable sensitivity and noninvasive, rapid response to temperature changes. However, achieving both high absolute and relative temperature sensitivity in two-dimensional perovskites presents a substantial challenge. Here, we propose a novel approach to address this issue by designing and synthesizing a new narrow-band blue light-emitting two-dimensional perovskite named (C8H12NO2)2PbBr4 using a straightforward solution-based method. Under excitation of near-ultraviolet light, (C8H12NO2)2PbBr4 shows an ultranarrow emission band with the full width at half-maximum (FWHM) of only 19 nm. Furthermore, its luminescence property can be efficiently tuned by incorporating energy transfer from host excitons to Mn2+. This energy transfer leads to dual emission, encompassing both blue and orange emissions, with an impressive energy transfer efficiency of 38.3%. Additionally, we investigated the temperature-dependent fluorescence intensity ratio between blue emission of (C8H12NO2)2PbBr4 and orange emission of Mn2+. Remarkably, (C8H12NO2)2PbBr4:Mn2+ exhibited maximum absolute sensitivity and relative sensitivity values of 0.055 K-1 and 3.207% K-1, respectively, within the temperature range of 80-360 K. This work highlights the potential of (C8H12NO2)2PbBr4:Mn2+ as a promising candidate for optical thermometry sensor application. Moreover, our findings provide valuable insights into the design of narrow-band blue light-emitting perovskites, enabling the achievement of single-component dual emission in optical thermometry sensors.

2.
Adv Mater ; 35(22): e2210611, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37058138

ABSTRACT

Humidity- and moisture-induced degradation has been a longstanding problem in perovskite materials, affecting their long-term stability during applications. Counterintuitively, the moisture is leveraged to tailor the reversible hydrochromic behaviors of a new series of 2D Dion-Jacobson (DJ) perovskites for reconfigurable optoelectronics. In particular, the hydrogen bonds between organic cations and water molecules can be dynamically modulated via moisture removal/exposure. Remarkably, such modulation confines the movement of the organic cations close to the original position, preventing their escape from crystal lattices. Furthermore, this mechanism is elucidated by theoretical analysis using first-principles calculations and confirmed with the experimental characterizations. The reversible fluorescent transition 2D DJ perovskites show excellent cyclical properties, presenting untapped opportunities for reconfigurable optoelectronic applications. As a proof-of-concept demonstration, an anti-counterfeiting display is shown based on patterned reversible 2D DJ perovskites. The results represent a new avenue of reconfigurable optoelectronic application with 2D DJ perovskites for humidity detection, anti-counterfeiting, sensing, and other emerging photoelectric intelligent technologies.

3.
Chem Soc Rev ; 52(1): 212-247, 2023 Jan 03.
Article in English | MEDLINE | ID: mdl-36468561

ABSTRACT

Recently, halide perovskites (HPs) and layered two-dimensional (2D) materials have received significant attention from industry and academia alike. HPs are emerging materials that have exciting photoelectric properties, such as a high absorption coefficient, rapid carrier mobility and high photoluminescence quantum yields, making them excellent candidates for various optoelectronic applications. 2D materials possess confined carrier mobility in 2D planes and are widely employed in nanostructures to achieve interfacial modification. HP/2D material interfaces could potentially reveal unprecedented interfacial properties, including light absorbance with desired spectral overlap, tunable carrier dynamics and modified stability, which may lead to several practical applications. In this review, we attempt to provide a comprehensive perspective on the development of interfacial engineering of HP/2D material interfaces. Specifically, we highlight the recent progress in HP/2D material interfaces considering their architectures, electronic energetics tuning and interfacial properties, discuss the potential applications of these interfaces and analyze the challenges and future research directions of interfacial engineering of HP/2D material interfaces. This review links the fields of HPs and 2D materials through interfacial engineering to provide insights into future innovations and their great potential applications in optoelectronic devices.

4.
Nano Lett ; 22(10): 4260-4268, 2022 May 25.
Article in English | MEDLINE | ID: mdl-35442697

ABSTRACT

Polaritons in polar biaxial crystals with extreme anisotropy offer a promising route to manipulate nanoscale light-matter interactions. The dynamic modulation of their dispersion is of great significance for future integrated nano-optics but remains challenging. Here, we report tunable topological transitions in biaxial crystals enabled by interface engineering. We theoretically demonstrate such tailored polaritons at the interface of heterostructures between graphene and α-phase molybdenum trioxide (α-MoO3). The interlayer coupling can be modulated by both the stack of graphene and α-MoO3 and the magnitude of the Fermi level in graphene enabling a dynamic topological transition. More interestingly, we found that the wavefront transition occurs at a constant Fermi level when the thickness of α-MoO3 is tuned. Furthermore, we also experimentally verify the hybrid polaritons in the graphene/α-MoO3 heterostructure with different thicknesses of α-MoO3. The interface engineering offers new insights into optical topological transitions, which may shed new light on programmable polaritonics, energy transfer, and neuromorphic photonics.

5.
Biosensors (Basel) ; 11(9)2021 Aug 30.
Article in English | MEDLINE | ID: mdl-34562897

ABSTRACT

Super-resolution optical imaging is a consistent research hotspot for promoting studies in nanotechnology and biotechnology due to its capability of overcoming the diffraction limit, which is an intrinsic obstacle in pursuing higher resolution for conventional microscopy techniques. In the past few decades, a great number of techniques in this research domain have been theoretically proposed and experimentally demonstrated. Graphene, a special two-dimensional material, has become the most meritorious candidate and attracted incredible attention in high-resolution imaging domain due to its distinctive properties. In this article, the working principle of graphene-assisted imaging devices is summarized, and recent advances of super-resolution optical imaging based on graphene are reviewed for both near-field and far-field applications.


Subject(s)
Graphite , Optical Imaging , Microscopy , Nanotechnology
6.
Adv Mater ; 33(26): e2008070, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33998712

ABSTRACT

Phonon polaritons-light coupled to lattice vibrations-in polar van der Waals crystals offer unprecedented opportunities for controlling light at the nanoscale due to their anisotropic and ultralow-loss propagation. While their analog plasmon polaritons-light coupled to electron oscillations-have long been studied and exhibit interesting reflections at geometrical edges and electronic boundaries, whether phonon polaritons can be reflected by such barriers has been elusive. Here, the effective and tunable reflection of phonon polaritons at embedded interfaces formed in hydrogen-intercalated α-MoO3 flakes is elaborated upon. Without breaking geometrical continuity, such intercalation interfaces can reflect phonon polaritons with low losses, yielding the distinct phase changes of -0.8π and -0.3π associated with polariton propagation, high efficiency of 50%, and potential electrical tunability. The results point to a new approach to construct on-demand polariton reflectors, phase modulators, and retarders, which may be transplanted into building future polaritonic circuits using van der Waals crystals.

7.
Nano Lett ; 21(7): 3112-3119, 2021 Apr 14.
Article in English | MEDLINE | ID: mdl-33764791

ABSTRACT

Surface phonon polaritons (SPhPs) in polar dielectrics offer new opportunities for infrared nanophotonics. However, bulk SPhPs inherently propagate isotropically with limited photon confinement, and how to collectively realize ultralarge confinement, in-plane hyperbolicity, and unidirectional propagation remains elusive. Here, we report an approach to solve the aforementioned issues of bulk SPhPs in one go by constructing a heterostructural interface between biaxial van der Waals material (e.g., α-MoO3) and bulk polar dielectric (e.g., SiC, AlN, and GaN). Because of anisotropy-oriented mode couplings, the hybridized SPhPs with a large confinement factor (>100) show in-plane hyperbolicity that has been switched to the orthogonal direction as compared to that in natural α-MoO3. More interestingly, this proof of concept allows steerable and unidirectional polariton excitation by suspending α-MoO3 on patterned SiC air cavities. Our finding exemplifies a generalizable framework to manipulate the flow of nanolight in many other hybrid systems consisting of anisotropic materials and polar dielectrics.

8.
Nat Commun ; 11(1): 6086, 2020 Nov 30.
Article in English | MEDLINE | ID: mdl-33257664

ABSTRACT

Highly confined and low-loss polaritons are known to propagate isotropically over graphene and hexagonal boron nitride in the plane, leaving limited degrees of freedom in manipulating light at the nanoscale. The emerging family of biaxial van der Waals materials, such as α-MoO3 and V2O5, support exotic polariton propagation, as their auxiliary optical axis is in the plane. Here, exploiting this strong in-plane anisotropy, we report edge-tailored hyperbolic polaritons in patterned α-MoO3 nanocavities via real-space nanoimaging. We find that the angle between the edge orientation and the crystallographic direction significantly affects the optical response, and can serve as a key tuning parameter in tailoring the polaritonic patterns. By shaping α-MoO3 nanocavities with different geometries, we observe edge-oriented and steerable hyperbolic polaritons as well as forbidden zones where the polaritons detour. The lifetime and figure of merit of the hyperbolic polaritons can be regulated by the edge aspect ratio of nanocavity.

9.
Nature ; 582(7811): 209-213, 2020 06.
Article in English | MEDLINE | ID: mdl-32528096

ABSTRACT

Twisted two-dimensional bilayer materials exhibit many exotic electronic phenomena. Manipulating the 'twist angle' between the two layers enables fine control of the electronic band structure, resulting in magic-angle flat-band superconductivity1,2, the formation of moiré excitons3-8 and interlayer magnetism9. However, there are limited demonstrations of such concepts for photons. Here we show how analogous principles, combined with extreme anisotropy, enable control and manipulation of the photonic dispersion of phonon polaritons in van der Waals bilayers. We experimentally observe tunable topological transitions from open (hyperbolic) to closed (elliptical) dispersion contours in bilayers of α-phase molybdenum trioxide (α-MoO3), arising when the rotation between the layers is at a photonic magic twist angle. These transitions are induced by polariton hybridization and are controlled by a topological quantity. At the transitions the bilayer dispersion flattens, exhibiting low-loss tunable polariton canalization and diffractionless propagation with a resolution of less than λ0/40, where λ0 is the free-space wavelength. Our findings extend twistronics10 and moiré physics to nanophotonics and polaritonics, with potential applications in nanoimaging, nanoscale light propagation, energy transfer and quantum physics.

10.
Chem Rev ; 120(13): 6197-6246, 2020 Jul 08.
Article in English | MEDLINE | ID: mdl-32496053

ABSTRACT

Recently, two rich and exciting research fields, layered two-dimensional (2D) materials and metamaterials, have started overlapping. Metamaterials are artificial, engineered materials with broad metaphotonic prospects such as negative refraction, perfect lensing, subwavelength imaging, and cloaking. The possibility of achieving metaphotonic properties using metamaterials based on layered 2D materials has been extensively exploited. Because they are highly tunable and adjustable with the ease of micro- and nanofabrication, 2D materials exhibit diverse optical properties such as natural negative refraction, natural anisotropic behavior, and even hyperbolic dispersion. A combination of 2D materials with conventional metamaterials promises a variety of prospective applications. In this review, we illustrate how the concept of metamaterials and their associated metaphotonic capabilities are naturally born in 2D materials. The multifunctionality of 2D materials may enable the manufacture of novel optical devices that work in a broad frequency range, from visible to terahertz, with particularly low loss, high speed, gated tunability, and miniaturized sizes. This new area of research links the fields of photonics, optoelectronics, and plasmonics with that of metamaterials and may provide insights to future innovations for 2D-material-inspired metaphotonic devices.

11.
Nat Commun ; 11(1): 2646, 2020 May 27.
Article in English | MEDLINE | ID: mdl-32461577

ABSTRACT

Phonon polaritons (PhPs) have attracted significant interest in the nano-optics communities because of their nanoscale confinement and long lifetimes. Although PhP modification by changing the local dielectric environment has been reported, controlled manipulation of PhPs by direct modification of the polaritonic material itself has remained elusive. Here, chemical switching of PhPs in α-MoO3 is achieved by engineering the α-MoO3 crystal through hydrogen intercalation. The intercalation process is non-volatile and recoverable, allowing reversible switching of PhPs while maintaining the long lifetimes. Precise control of the intercalation parameters enables analysis of the intermediate states, in which the needle-like hydrogenated nanostructures functioning as in-plane antennas effectively reflect and launch PhPs and form well-aligned cavities. We further achieve spatially controlled switching of PhPs in selective regions, leading to in-plane heterostructures with various geometries. The intercalation strategy introduced here opens a relatively non-destructive avenue connecting infrared nanophotonics, reconfigurable flat metasurfaces and van der Waals crystals.

12.
ACS Appl Mater Interfaces ; 11(21): 19397-19403, 2019 May 29.
Article in English | MEDLINE | ID: mdl-31026141

ABSTRACT

Interfaces between metals and semiconducting materials can inevitably influence the magnetotransport properties, which are crucial for technological applications ranging from magnetic sensing to storage devices. By taking advantage of this, a metallic graphene foam is integrated with semiconducting copper-based metal sulfide nanocrystals, i.e., Cu2ZnSnS4 (copper-zinc-tin-sulfur) without direct chemical bonding and structural damage, which creates numerous nanoboundaries that can be basically used to tune the magnetotransport properties. Herein, the magnetoresistance of a graphene foam is enhanced from nearly 90 to 130% at room temperature and under the application of 5 T magnetic field strength due to the addition of Cu2ZnSnS4 nanocrystals in high densities. We believe that the enhancement of magnetoresistance in hybrid graphene foam/Cu2ZnSnS4 nanocrystals is due to the evolution of the mobility fluctuation mechanism, triggered by the formation of nanoboundaries. Incorporating Cu2ZnSnS4 nanocrystals into a graphene foam not only provides an effective way to further enhance the magnitude of magnetoresistance but also opens a suitable window to achieve efficient and highly functional magnetic sensors with a large, linear, and controllable response.

13.
Nat Commun ; 10(1): 28, 2019 01 03.
Article in English | MEDLINE | ID: mdl-30604756

ABSTRACT

MicroRNA exhibits differential expression levels in cancer and can affect cellular transformation, carcinogenesis and metastasis. Although fluorescence techniques using dye molecule labels have been studied, label-free molecular-level quantification of miRNA is extremely challenging. We developed a surface plasmon resonance sensor based on two-dimensional nanomaterial of antimonene for the specific label-free detection of clinically relevant biomarkers such as miRNA-21 and miRNA-155. First-principles energetic calculations reveal that antimonene has substantially stronger interaction with ssDNA than the graphene that has been previously used in DNA molecule sensing, due to thanking for more delocalized 5s/5p orbitals in antimonene. The detection limit can reach 10 aM, which is 2.3-10,000 times higher than those of existing miRNA sensors. The combination of not-attempted-before exotic sensing material and SPR architecture represents an approach to unlocking the ultrasensitive detection of miRNA and DNA and provides a promising avenue for the early diagnosis, staging, and monitoring of cancer.


Subject(s)
Antimony/chemistry , Biosensing Techniques/instrumentation , Graphite/chemistry , MicroRNAs/isolation & purification , Surface Plasmon Resonance/instrumentation , Biomarkers, Tumor/isolation & purification , Biosensing Techniques/methods , DNA, Single-Stranded/isolation & purification , Humans , Lab-On-A-Chip Devices , Limit of Detection , Nanostructures/chemistry , Neoplasms/diagnosis , Neoplasms/genetics , Sensitivity and Specificity , Surface Plasmon Resonance/methods
14.
Nature ; 562(7728): 557-562, 2018 10.
Article in English | MEDLINE | ID: mdl-30356185

ABSTRACT

Polaritons-hybrid light-matter excitations-enable nanoscale control of light. Particularly large polariton field confinement and long lifetimes can be found in graphene and materials consisting of two-dimensional layers bound by weak van der Waals forces1,2 (vdW materials). These polaritons can be tuned by electric fields3,4 or by material thickness5, leading to applications including nanolasers6, tunable infrared and terahertz detectors7, and molecular sensors8. Polaritons with anisotropic propagation along the surface of vdW materials have been predicted, caused by in-plane anisotropic structural and electronic properties9. In such materials, elliptic and hyperbolic in-plane polariton dispersion can be expected (for example, plasmon polaritons in black phosphorus9), the latter leading to an enhanced density of optical states and ray-like directional propagation along the surface. However, observation of anisotropic polariton propagation in natural materials has so far remained elusive. Here we report anisotropic polariton propagation along the surface of α-MoO3, a natural vdW material. By infrared nano-imaging and nano-spectroscopy of semiconducting α-MoO3 flakes and disks, we visualize and verify phonon polaritons with elliptic and hyperbolic in-plane dispersion, and with wavelengths (up to 60 times smaller than the corresponding photon wavelengths) comparable to those of graphene plasmon polaritons and boron nitride phonon polaritons3-5. From signal oscillations in real-space images we measure polariton amplitude lifetimes of 8 picoseconds, which is more than ten times larger than that of graphene plasmon polaritons at room temperature10. They are also a factor of about four larger than the best values so far reported for phonon polaritons in isotopically engineered boron nitride11 and for graphene plasmon polaritons at low temperatures12. In-plane anisotropic and ultra-low-loss polaritons in vdW materials could enable directional and strong light-matter interactions, nanoscale directional energy transfer and integrated flat optics in applications ranging from bio-sensing to quantum nanophotonics.

15.
Adv Mater ; 30(15): e1705792, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29493028

ABSTRACT

A semiconductor p-n junction typically has a doping-induced carrier depletion region, where the doping level positively correlates with the built-in potential and negatively correlates with the depletion layer width. In conventional bulk and atomically thin junctions, this correlation challenges the synergy of the internal field and its spatial extent in carrier generation/transport. Organic-inorganic hybrid perovskites, a class of crystalline ionic semiconductors, are promising alternatives because of their direct badgap, long diffusion length, and large dielectric constant. Here, strong depletion in a lateral p-n junction induced by local electronic doping at the surface of individual CH3 NH3 PbI3 perovskite nanosheets is reported. Unlike conventional surface doping with a weak van der Waals adsorption, covalent bonding and hydrogen bonding between a MoO3 dopant and the perovskite are theoretically predicted and experimentally verified. The strong hybridization-induced electronic coupling leads to an enhanced built-in electric field. The large electric permittivity arising from the ionic polarizability further contributes to the formation of an unusually broad depletion region up to 10 µm in the junction. Under visible optical excitation without electrical bias, the lateral diode demonstrates unprecedented photovoltaic conversion with an external quantum efficiency of 3.93% and a photodetection responsivity of 1.42 A W-1 .

16.
Nanoscale ; 10(1): 142-149, 2017 Dec 21.
Article in English | MEDLINE | ID: mdl-29159329

ABSTRACT

Plasmonic nanomaterials, along with their assemblies, provide numerous applications due to their profound optical properties. In this work, we report the self-assembly of Au@Ag core-shell nanocuboids (NCs) into staircase superstructures in both vertical and horizontal orientations through two-stage droplet evaporation. Each stair is composed of a uniform well-aligned monolayer of NCs. The gap distance between NCs can be greatly shrunk to boost the corresponding surface-enhanced Raman scattering (SERS) performance using an ethanol wash method. The SERS performance of the assembled NCs is calculated by finite-difference time-domain (FDTD) simulation, and studied against the step number using 4-mercaptobenzoic acid as a Raman reporter molecule. The increasing EF with the increase of layer number proves that the plasmon mode propagates well in our uniformly aligned assemblies.

17.
Small ; 13(42)2017 11.
Article in English | MEDLINE | ID: mdl-28940722

ABSTRACT

The integration of graphene with colloidal quantum dots (QDs) that have tunable light absorption affords new opportunities for optoelectronic applications as such a hybrid system solves the problem of both quantity and mobility of photocarriers. In this work, a hybrid system comprising of monolayer graphene and self-doped colloidal copper phosphide (Cu3-x P) QDs is developed for efficient broadband photodetection. Unlike conventional PbS QDs that are toxic, Cu3-x P QDs are environmental friendly and have plasmonic resonant absorption in near-infrared (NIR) wavelength. The half-covered graphene with Cu3-x P nanocrystals (NCs) behaves as a self-driven p-n junction and shows durable photoresponse in NIR range. A comparison experiment reveals that the surface ligand attached to Cu3-x P NCs plays a key role in determining the charge transfer efficiency from Cu3-x P to graphene. The most efficient three-terminal photodetectors based on graphene-Cu3-x P exhibit broadband photoresponse from 400 to 1550 nm with an ultrahigh responsivity (1.59 × 105 A W-1 ) and high photoconductive gain (6.66 × 105 ) at visible wavelength (405 nm), and a good responsivity of 9.34 A W-1 at 1550 nm. The demonstration of flexible graphene-Cu3-x P photodetectors operated at NIR wavelengths may find potential applications in optical sensing, biological imaging, and wearable devices.

18.
ACS Appl Mater Interfaces ; 9(28): 23265-23286, 2017 Jul 19.
Article in English | MEDLINE | ID: mdl-28628307

ABSTRACT

TiO2 is the most investigated photocatalyst because of its nontoxicity, low cost, chemical stability, and strong photooxidative ability. Because of the morphology- and structure-dependent photocatalytic properties of TiO2, accurate characterization of the crystal and electronic structures of TiO2-based materials and their performance during the photocatalytic process is crucial not only for understanding the photocatalytic mechanism but also for providing experimental guidelines as well as a theoretical framework for the synthesis of high performance photocatalysts. In this review, we focused on the advanced characterization techniques that are utilized in the studies on the TiO2 structures and photocatalytic performance of TiO2 and TiO2-based materials. It is therefore anticipated that this review can provide a novel perspective to understand the fundamental aspects of photocatalysis and inspire the development of new photocatalysts with superior performances.

19.
Nanoscale ; 9(9): 3114-3120, 2017 Mar 02.
Article in English | MEDLINE | ID: mdl-28203665

ABSTRACT

Low-cost, stabilized and ultrasensitive three-dimensional (3D) hierarchical surface-enhanced Raman scattering substrates ("sunflower-like" nanoarrays decorated with Ag nanoparticles, denoted as SLNAs-Ag) have been obtained by fabricating binary colloidal crystals and then decorating with Ag nanoparticles. In order to provide a larger density of hot spots within the laser-illumination area, the silica sphere arrays were chosen as the island-type platform for the polystyrene (PS) nanosphere deposition, and the distances between the PS nanospheres were tuned by etching for different durations. Compared with conventional 2D planar systems, the as-fabricated 3D SLNAs-Ag exhibited extremely high SERS sensitivity ascribed to the larger SERS active regions. Quantitative detection of molecules with an extremely low incident laser power was achieved on the "sunflower-like" nanoarrays in which the PS nanospheres were etched for 5 minutes and decorated with Ag nanoparticles, and the corresponding analytical enhancement factor is calculated to be 2 × 1014 with the concentration of rhodamine 6G down to 10-15 M. Based on the achieved SERS substrates, we have further demonstrated the highly sensitive detection of molecules such as melamine for food safety inspection.

20.
Adv Mater ; 29(3)2017 Jan.
Article in English | MEDLINE | ID: mdl-27859705

ABSTRACT

Tungsten-graphene multilayer composites are fabricated using a stacking method. The thermal resistance induced by the graphene interlayer is moderate. An ion-implantation method is used to verify the radiation tolerance. The results show that graphene inserted among tungsten films plays a dominant role in reducing radiation damage. Furthermore, the performance of different tungsten period-thicknesses in radiation tolerance is systematically analyzed.

SELECTION OF CITATIONS
SEARCH DETAIL
...