Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Genome Announc ; 6(25)2018 Jun 21.
Article in English | MEDLINE | ID: mdl-29930054

ABSTRACT

We present here the genome sequences of Shewanella baltica strain CW2 and Shewanella morhuae strain CW7, isolated from the gastrointestinal tract of Salvelinus namaycush (lean lake trout) and Coregonus clupeaformis (whitefish), respectively. These genome sequences provide insights into the niche adaptation of these specific species in freshwater systems.

2.
Genome Announc ; 6(16)2018 Apr 19.
Article in English | MEDLINE | ID: mdl-29674546

ABSTRACT

We present here the whole-genome sequence of Shewanella sp. WE21, an unusual omega-3 fatty acid-producing bacterium isolated from the gastrointestinal tract of the freshwater fish Sander vitreus (walleye). This genome contains a number of unique, large genomic islands with genes not present in other Shewanella bacteria.

3.
Appl Environ Microbiol ; 82(1): 218-31, 2016 01 01.
Article in English | MEDLINE | ID: mdl-26497452

ABSTRACT

Approximately 30 years ago, it was discovered that free-living bacteria isolated from cold ocean depths could produce polyunsaturated fatty acids (PUFA) such as eicosapentaenoic acid (EPA) (20:5n-3) or docosahexaenoic acid (DHA) (22:6n-3), two PUFA essential for human health. Numerous laboratories have also discovered that EPA- and/or DHA-producing bacteria, many of them members of the Shewanella genus, could be isolated from the intestinal tracts of omega-3 fatty acid-rich marine fish. If bacteria contribute omega-3 fatty acids to the host fish in general or if they assist some bacterial species in adaptation to cold, then cold freshwater fish or habitats should also harbor these producers. Thus, we undertook a study to see if these niches also contained omega-3 fatty acid producers. We were successful in isolating and characterizing unique EPA-producing strains of Shewanella from three strictly freshwater native fish species, i.e., lake whitefish (Coregonus clupeaformis), lean lake trout (Salvelinus namaycush), and walleye (Sander vitreus), and from two other freshwater nonnative fish, i.e., coho salmon (Oncorhynchus kisutch) and seeforellen brown trout (Salmo trutta). We were also able to isolate four unique free-living strains of EPA-producing Shewanella from freshwater habitats. Phylogenetic and phenotypic analyses suggest that one producer is clearly a member of the Shewanella morhuae species and another is sister to members of the marine PUFA-producing Shewanella baltica species. However, the remaining isolates have more ambiguous relationships, sharing a common ancestor with non-PUFA-producing Shewanella putrefaciens isolates rather than marine S. baltica isolates despite having a phenotype more consistent with S. baltica strains.


Subject(s)
Fatty Acids, Omega-3/biosynthesis , Fishes/microbiology , Shewanella/isolation & purification , Shewanella/metabolism , Water Microbiology , Animals , DNA, Bacterial , Eicosapentaenoic Acid/biosynthesis , Fresh Water/microbiology , Gastrointestinal Tract/microbiology , Humans , Lakes/microbiology , Microbiota/physiology , Molecular Sequence Data , Phenotype , Phylogeny , RNA, Ribosomal, 16S , Shewanella/genetics
4.
J Bacteriol ; 184(3): 771-6, 2002 Feb.
Article in English | MEDLINE | ID: mdl-11790747

ABSTRACT

Flagellar assembly requires the expression of a large number of flagellum-specific genes. However, mutations in a number of other genes in Salmonella and Escherichia coli have been shown to have pleiotropic effects that affect flagellar assembly. FlgH (the L-ring subunit of the flagellar basal body) is a lipoprotein whose modification is important for L-ring assembly. We therefore tested whether the lack of motility of Salmonella mutants defective in lipoprotein biogenesis is a result of inability to modify FlgH. Our results show that temperature-sensitive apolipoprotein N-acyltransferase [lnt(Ts)] mutants are nonflagellate at 42 degrees C. However, the flagellar assembly defect occurs at a much earlier step in the pathway than L-ring assembly. These mutants failed to assemble even an MS ring, presumably because of the observed decrease in transcription of fliF. In contrast, temperature-sensitive diacylglycerol transferase [lgt(Ts)] mutants were motile at 42 degrees C, provided the strains carried an lpp (Braun lipoprotein) mutation to permit growth. We have isolated second-site mutants from an lgt(Ts) lpp(+) strain that grow but are nonflagellate at 42 degrees C. Thus, lipoprotein biogenesis is a factor that is important for flagellar assembly.


Subject(s)
Acyltransferases/genetics , Bacterial Outer Membrane Proteins/biosynthesis , Flagella/physiology , Lipoproteins/biosynthesis , Membrane Proteins , Salmonella typhimurium/genetics , Bacterial Proteins/genetics , Movement , Mutation
SELECTION OF CITATIONS
SEARCH DETAIL