Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
Add more filters










Publication year range
1.
Front Microbiol ; 15: 1378989, 2024.
Article in English | MEDLINE | ID: mdl-38544863

ABSTRACT

Nature utilizes three distinct pathways to synthesize the essential enzyme cofactor heme. The coproporphyrin III-dependent pathway, predominantly present in Bacillaceae, employs an oxygen-dependent coproporphyrinogen III oxidase (CgoX) that converts coproporphyrinogen III into coproporphyrin III. In this study, we report the bioinformatic-based identification of a gene called ytpQ, encoding a putative oxygen-independent counterpart, which we propose to term CgoN, from Priestia (Bacillus) megaterium. The recombinantly produced, purified, and monomeric YtpQ (CgoN) protein is shown to catalyze the oxygen-independent conversion of coproporphyrinogen III into coproporphyrin III. Minimal non-enzymatic conversion of coproporphyrinogen III was observed under the anaerobic test conditions employed in this study. FAD was identified as a cofactor, and menadione served as an artificial acceptor for the six abstracted electrons, with a KM value of 3.95 µmol/L and a kcat of 0.63 per min for the substrate. The resulting coproporphyrin III, in turn, acts as an effective substrate for the subsequent enzyme of the pathway, the coproporphyrin III ferrochelatase (CpfC). Under aerobic conditions, oxygen directly serves as an electron acceptor, but is replaced by the more efficient action of menadione. An AlphaFold2 model of the enzyme suggests that YtpQ adopts a compact triangular shape consisting of three domains. The N-terminal domain appears to be flexible with respect to the rest of the structure, potentially creating a ligand binding site that opens and closes during the catalytic cycle. A catalytic mechanism similar to the oxygen-independent protoporphyrinogen IX oxidase PgoH1 (HemG), based on the flavin-dependent abstraction of six electrons from coproporphyrinogen III and their potential quinone-dependent transfer to a membrane-localized electron transport chain, is proposed.

2.
Biomolecules ; 13(10)2023 10 06.
Article in English | MEDLINE | ID: mdl-37892169

ABSTRACT

The final three steps of heme biogenesis exhibit notable differences between di- and mono-derm bacteria. The former employs the protoporphyrin-dependent (PPD) pathway, while the latter utilizes the more recently uncovered coproporphyrin-dependent (CPD) pathway. In order to devise a rapid screen for potential inhibitors that differentiate the two pathways, the genes associated with the protoporphyrin pathway in an Escherichia coli YFP strain were replaced with those for the CPD pathway from Staphylococcus aureus (SA) through a sliding modular gene replacement recombineering strategy to generate the E. coli strain Sa-CPD-YFP. Potential inhibitors that differentially target the pathways were identified by screening compound libraries against the YFP-producing Sa-CPD-YFP strain in comparison to a CFP-producing E. coli strain. Using a mixed strain assay, inhibitors targeting either the CPD or PPD heme pathways were identified through a decrease in one fluorescent signal but not the other. An initial screen identified both azole and prodigiosin-derived compounds that were shown to specifically target the CPD pathway and which led to the accumulation of coproheme, indicating that the main target of inhibition would appear to be the coproheme decarboxylase (ChdC) enzyme. In silico modeling highlighted that these inhibitors are able to bind within the active site of ChdC.


Subject(s)
Escherichia coli , Protoporphyrins , Escherichia coli/genetics , Escherichia coli/metabolism , Heme/metabolism , Bacteria/metabolism
3.
Life (Basel) ; 13(2)2023 Feb 18.
Article in English | MEDLINE | ID: mdl-36836934

ABSTRACT

Heme is an essential cofactor for multiple cellular processes in most organisms. In developing erythroid cells, the demand for heme synthesis is high, but is significantly lower in non-erythroid cells. While the biosynthesis of heme in metazoans is well understood, the tissue-specific regulation of the pathway is less explored. To better understand this, we analyzed the mitochondrial heme metabolon in erythroid and non-erythroid cell lines from the perspective of ferrochelatase (FECH), the terminal enzyme in the heme biosynthetic pathway. Affinity purification of FLAG-tagged-FECH, together with mass spectrometric analysis, was carried out to identify putative protein partners in human and murine cell lines. Proteins involved in the heme biosynthetic process and mitochondrial organization were identified as the core components of the FECH interactome. Interestingly, in non-erythroid cell lines, the FECH interactome is highly enriched with proteins associated with the tricarboxylic acid (TCA) cycle. Overall, our study shows that the mitochondrial heme metabolon in erythroid and non-erythroid cells has similarities and differences, and suggests new roles for the mitochondrial heme metabolon and heme in regulating metabolic flux and key cellular processes.

4.
Microbiol Spectr ; 10(5): e0360422, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36169423

ABSTRACT

Heme is both an essential cofactor and an abundant source of nutritional iron for the human pathogen Mycobacterium tuberculosis. While heme is required for M. tuberculosis survival and virulence, it is also potentially cytotoxic. Since M. tuberculosis can both synthesize and take up heme, the de novo synthesis of heme and its acquisition from the host may need to be coordinated in order to mitigate heme toxicity. However, the mechanisms employed by M. tuberculosis to regulate heme uptake, synthesis, and bioavailability are poorly understood. By integrating ratiometric heme sensors with mycobacterial genetics, cell biology, and biochemistry, we determined that de novo-synthesized heme is more bioavailable than exogenously scavenged heme, and heme availability signals the downregulation of heme biosynthetic enzyme gene expression. Ablation of heme synthesis does not result in the upregulation of known heme import proteins. Moreover, we found that de novo heme synthesis is critical for survival from macrophage assault. Altogether, our data suggest that mycobacteria utilize heme from endogenous and exogenous sources differently and that targeting heme synthesis may be an effective therapeutic strategy to treat mycobacterial infections. IMPORTANCE Mycobacterium tuberculosis infects ~25% of the world's population and causes tuberculosis (TB), the second leading cause of death from infectious disease. Heme is an essential metabolite for M. tuberculosis, and targeting the unique heme biosynthetic pathway of M. tuberculosis could serve as an effective therapeutic strategy. However, since M. tuberculosis can both synthesize and scavenge heme, it was unclear if inhibiting heme synthesis alone could serve as a viable approach to suppress M. tuberculosis growth and virulence. The importance of this work lies in the development and application of genetically encoded fluorescent heme sensors to probe bioavailable heme in M. tuberculosis and the discovery that endogenously synthesized heme is more bioavailable than exogenously scavenged heme. Moreover, it was found that heme synthesis protected M. tuberculosis from macrophage killing, and bioavailable heme in M. tuberculosis is diminished during macrophage infection. Altogether, these findings suggest that targeting M. tuberculosis heme synthesis is an effective approach to combat M. tuberculosis infections.


Subject(s)
Mycobacterium Infections , Mycobacterium tuberculosis , Tuberculosis, Lymph Node , Humans , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/metabolism , Heme/metabolism , Bacterial Proteins/metabolism , Iron/metabolism
5.
Biol Chem ; 403(11-12): 985-1003, 2022 11 25.
Article in English | MEDLINE | ID: mdl-36029525

ABSTRACT

Heme (protoheme IX) is an essential cofactor for a large variety of proteins whose functions vary from one electron reactions to binding gases. While not ubiquitous, heme is found in the great majority of known life forms. Unlike most cofactors that are acquired from dietary sources, the vast majority of organisms that utilize heme possess a complete pathway to synthesize the compound. Indeed, dietary heme is most frequently utilized as an iron source and not as a source of heme. In Nature there are now known to exist three pathways to synthesize heme. These are the siroheme dependent (SHD) pathway which is the most ancient, but least common of the three; the coproporphyrin dependent (CPD) pathway which with one known exception is found only in gram positive bacteria; and the protoporphyrin dependent (PPD) pathway which is found in gram negative bacteria and all eukaryotes. All three pathways share a core set of enzymes to convert the first committed intermediate, 5-aminolevulinate (ALA) into uroporphyrinogen III. In the current review all three pathways are reviewed as well as the two known pathways to synthesize ALA. In addition, interesting features of some heme biosynthesis enzymes are discussed as are the regulation and disorders of heme biosynthesis.


Subject(s)
Aminolevulinic Acid , Heme , Heme/chemistry , Iron
6.
Int J Mol Sci ; 23(13)2022 Jul 05.
Article in English | MEDLINE | ID: mdl-35806474

ABSTRACT

During erythropoiesis, there is an enormous demand for the synthesis of the essential cofactor of hemoglobin, heme. Heme is synthesized de novo via an eight enzyme-catalyzed pathway within each developing erythroid cell. A large body of data exists to explain the transcriptional regulation of the heme biosynthesis enzymes, but until recently much less was known about alternate forms of regulation that would allow the massive production of heme without depleting cellular metabolites. Herein, we review new studies focused on the regulation of heme synthesis via carbon flux for porphyrin synthesis to post-translations modifications (PTMs) that regulate individual enzymes. These PTMs include cofactor regulation, phosphorylation, succinylation, and glutathionylation. Additionally discussed is the role of the immunometabolite itaconate and its connection to heme synthesis and the anemia of chronic disease. These recent studies provide new avenues to regulate heme synthesis for the treatment of diseases including anemias and porphyrias.


Subject(s)
Heme , Porphyrias , Erythropoiesis/physiology , Gene Expression Regulation , Heme/metabolism , Humans , Porphyrias/genetics
7.
Front Cell Dev Biol ; 10: 894591, 2022.
Article in English | MEDLINE | ID: mdl-35646904

ABSTRACT

Porphyrin and iron are ubiquitous and essential for sustaining life in virtually all living organisms. Unlike iron, which exists in many forms, porphyrin macrocycles are mostly functional as metal complexes. The iron-containing porphyrin, heme, serves as a prosthetic group in a wide array of metabolic pathways; including respiratory cytochromes, hemoglobin, cytochrome P450s, catalases, and other hemoproteins. Despite playing crucial roles in many biological processes, heme, iron, and porphyrin intermediates are potentially cytotoxic. Thus, the intersection of porphyrin and iron metabolism at heme synthesis, and intracellular trafficking of heme and its porphyrin precursors are tightly regulated processes. In this review, we discuss recent advances in understanding the physiological dynamics of eukaryotic ferrochelatase, a mitochondrially localized metalloenzyme. Ferrochelatase catalyzes the terminal step of heme biosynthesis, the insertion of ferrous iron into protoporphyrin IX to produce heme. In most eukaryotes, except plants, ferrochelatase is localized to the mitochondrial matrix, where substrates are delivered and heme is synthesized for trafficking to multiple cellular locales. Herein, we delve into the structural and functional features of ferrochelatase, as well as its metabolic regulation in the mitochondria. We discuss the regulation of ferrochelatase via post-translational modifications, transportation of substrates and product across the mitochondrial membrane, protein-protein interactions, inhibition by small-molecule inhibitors, and ferrochelatase in protozoal parasites. Overall, this review presents insight on mitochondrial heme homeostasis from the perspective of ferrochelatase.

8.
J Biol Chem ; 297(5): 101017, 2021 11.
Article in English | MEDLINE | ID: mdl-34582890

ABSTRACT

Heme, a near ubiquitous cofactor, is synthesized by most organisms. The essential step of insertion of iron into the porphyrin macrocycle is mediated by the enzyme ferrochelatase. Several ferrochelatases have been characterized, and it has been experimentally shown that a fraction of them contain [2Fe-2S] clusters. It has been suggested that all metazoan ferrochelatases have such clusters, but among bacteria, these clusters have been most commonly identified in Actinobacteria and a few other bacteria. Despite this, the function of the [2Fe-2S] cluster remains undefined. With the large number of sequenced genomes currently available, we comprehensively assessed the distribution of putative [2Fe-2S] clusters throughout the ferrochelatase protein family. We discovered that while rare within the bacterial ferrochelatase family, this cluster is prevalent in a subset of phyla. Of note is that genomic data show that the cluster is not common in Actinobacteria, as is currently thought based on the small number of actinobacterial ferrochelatases experimentally examined. With available physiological data for each genome included, we identified a correlation between the presence of the microbial cluster and aerobic metabolism. Additionally, our analysis suggests that Firmicute ferrochelatases are the most ancient and evolutionarily preceded the Alphaproteobacterial precursor to eukaryotic mitochondria. These findings shed light on distribution and evolution of the [2Fe-2S] cluster in ferrochelatases and will aid in determining the function of the cluster in heme synthesis.


Subject(s)
Actinobacteria , Bacterial Proteins , Ferrochelatase , Iron/chemistry , Sulfur/chemistry , Actinobacteria/chemistry , Actinobacteria/genetics , Amino Acid Motifs , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Ferrochelatase/chemistry , Ferrochelatase/genetics , Heme/chemistry , Heme/genetics
9.
Blood Adv ; 5(23): 4831-4841, 2021 12 14.
Article in English | MEDLINE | ID: mdl-34492704

ABSTRACT

As part of the inflammatory response by macrophages, Irg1 is induced, resulting in millimolar quantities of itaconate being produced. This immunometabolite remodels the macrophage metabolome and acts as an antimicrobial agent when excreted. Itaconate is not synthesized within the erythron but instead may be acquired from central macrophages within the erythroid island. Previously, we reported that itaconate inhibits hemoglobinization of developing erythroid cells. Herein we show that this action is accomplished by inhibition of tetrapyrrole synthesis. In differentiating erythroid precursors, cellular heme and protoporphyrin IX synthesis are reduced by itaconate at an early step in the pathway. In addition, itaconate causes global alterations in cellular metabolite pools, resulting in elevated levels of succinate, 2-hydroxyglutarate, pyruvate, glyoxylate, and intermediates of glycolytic shunts. Itaconate taken up by the developing erythron can be converted to itaconyl-coenzyme A (CoA) by the enzyme succinyl-CoA:glutarate-CoA transferase. Propionyl-CoA, propionyl-carnitine, methylmalonic acid, heptadecanoic acid, and nonanoic acid, as well as the aliphatic amino acids threonine, valine, methionine, and isoleucine, are increased, likely due to the impact of endogenous itaconyl-CoA synthesis. We further show that itaconyl-CoA is a competitive inhibitor of the erythroid-specific 5-aminolevulinate synthase (ALAS2), the first and rate-limiting step in heme synthesis. These findings strongly support our hypothesis that the inhibition of heme synthesis observed in chronic inflammation is mediated not only by iron limitation but also by limitation of tetrapyrrole synthesis at the point of ALAS2 catalysis by itaconate. Thus, we propose that macrophage-derived itaconate promotes anemia during an inflammatory response in the erythroid compartment.


Subject(s)
Heme , Succinates , Glycolysis , Macrophages , Succinates/pharmacology
10.
Redox Biol ; 46: 102125, 2021 10.
Article in English | MEDLINE | ID: mdl-34517185

ABSTRACT

Heme is an essential cofactor required for a plethora of cellular processes in eukaryotes. In metazoans the heme biosynthetic pathway is typically partitioned between the cytosol and mitochondria, with the first and final steps taking place in the mitochondrion. The pathway has been extensively studied and its biosynthetic enzymes structurally characterized to varying extents. Nevertheless, understanding of the regulation of heme synthesis and factors that influence this process in metazoans remains incomplete. Therefore, we investigated the molecular organization as well as the physical and genetic interactions of the terminal pathway enzyme, ferrochelatase (Hem15), in the yeast Saccharomyces cerevisiae. Biochemical and genetic analyses revealed dynamic association of Hem15 with Mic60, a core component of the mitochondrial contact site and cristae organizing system (MICOS). Loss of MICOS negatively impacts Hem15 activity, affects the size of the Hem15 high-mass complex, and results in accumulation of reactive and potentially toxic tetrapyrrole precursors that may cause oxidative damage. Restoring intermembrane connectivity in MICOS-deficient cells mitigates these cytotoxic effects. These data provide new insights into how heme biosynthetic machinery is organized and regulated, linking mitochondrial architecture-organizing factors to heme homeostasis.


Subject(s)
Ferrochelatase , Mitochondrial Proteins , Ferrochelatase/genetics , Ferrochelatase/metabolism , Heme/metabolism , Mitochondria/metabolism , Mitochondrial Membranes/metabolism , Mitochondrial Proteins/metabolism
11.
Biochem J ; 478(17): 3239-3252, 2021 09 17.
Article in English | MEDLINE | ID: mdl-34402499

ABSTRACT

Ferrochelatase catalyzes the insertion of ferrous iron into a porphyrin macrocycle to produce the essential cofactor, heme. In humans this enzyme not only catalyzes the terminal step, but also serves a regulatory step in the heme synthesis pathway. Over a dozen crystal structures of human ferrochelatase have been solved and many variants have been characterized kinetically. In addition, hydrogen deuterium exchange, resonance Raman, molecular dynamics, and high level quantum mechanic studies have added to our understanding of the catalytic cycle of the enzyme. However, an understanding of how the metal ion is delivered and the specific role that active site residues play in catalysis remain open questions. Data are consistent with metal binding and insertion occurring from the side opposite from where pyrrole proton abstraction takes place. To better understand iron delivery and binding as well as the role of conserved residues in the active site, we have constructed and characterized a series of enzyme variants. Crystallographic studies as well as rescue and kinetic analysis of variants were performed. Data from these studies are consistent with the M76 residue playing a role in active site metal binding and formation of a weak iron protein ligand being necessary for product release. Additionally, structural data support a role for E343 in proton abstraction and product release in coordination with a peptide loop composed of Q302, S303 and K304 that act a metal sensor.


Subject(s)
Catalytic Domain/physiology , Ferrochelatase/chemistry , Ferrochelatase/metabolism , Models, Molecular , Biocatalysis , Crystallization , Heme/biosynthesis , Histidine/metabolism , Humans , Iron/metabolism , Kinetics , Ligands , Protein Binding , Protons , Protoporphyrins/metabolism
12.
Nat Commun ; 11(1): 2813, 2020 06 04.
Article in English | MEDLINE | ID: mdl-32499479

ABSTRACT

5'-aminolevulinate synthase (ALAS) catalyzes the first step in heme biosynthesis, generating 5'-aminolevulinate from glycine and succinyl-CoA. Inherited frameshift indel mutations of human erythroid-specific isozyme ALAS2, within a C-terminal (Ct) extension of its catalytic core that is only present in higher eukaryotes, lead to gain-of-function X-linked protoporphyria (XLP). Here, we report the human ALAS2 crystal structure, revealing that its Ct-extension folds onto the catalytic core, sits atop the active site, and precludes binding of substrate succinyl-CoA. The Ct-extension is therefore an autoinhibitory element that must re-orient during catalysis, as supported by molecular dynamics simulations. Our data explain how Ct deletions in XLP alleviate autoinhibition and increase enzyme activity. Crystallography-based fragment screening reveals a binding hotspot around the Ct-extension, where fragments interfere with the Ct conformational dynamics and inhibit ALAS2 activity. These fragments represent a starting point to develop ALAS2 inhibitors as substrate reduction therapy for porphyria disorders that accumulate toxic heme intermediates.


Subject(s)
5-Aminolevulinate Synthetase/chemistry , Gene Expression Regulation, Enzymologic , 5-Aminolevulinate Synthetase/deficiency , 5-Aminolevulinate Synthetase/genetics , Acyl Coenzyme A/chemistry , Catalysis , Catalytic Domain , Crystallography, X-Ray , Genetic Diseases, X-Linked/genetics , Heme/chemistry , Humans , Kinetics , Molecular Dynamics Simulation , Protein Binding , Protein Conformation , Protein Domains , Protoporphyria, Erythropoietic/genetics , Substrate Specificity
13.
Mol Genet Metab ; 128(3): 198-203, 2019 11.
Article in English | MEDLINE | ID: mdl-30709775

ABSTRACT

Heme is an essential cofactor in metazoans that is also toxic in its free state. Heme is synthesized by most metazoans and must be delivered to all cellular compartments for incorporation into a variety of hemoproteins. The heme biosynthesis enzymes have been proposed to exist in a metabolon, a protein complex consisting of interacting enzymes in a metabolic pathway. Metabolons enhance the function of enzymatic pathways by creating favorable microenvironments for pathway enzymes and intermediates, facilitating substrate transport, and providing a scaffold for interactions with other pathways, signaling molecules, or organelles. Herein we detail growing evidence for a mitochondrial heme metabolon and discuss its implications for the study of heme biosynthesis and cellular heme homeostasis.


Subject(s)
Heme/biosynthesis , Heme/metabolism , Metabolic Networks and Pathways , Metabolome , Mitochondria/enzymology , Animals , Homeostasis , Humans , Mice
14.
Blood ; 132(10): 987-998, 2018 09 06.
Article in English | MEDLINE | ID: mdl-29991557

ABSTRACT

During erythroid differentiation, the erythron must remodel its protein constituents so that the mature red cell contains hemoglobin as the chief cytoplasmic protein component. For this, ∼109 molecules of heme must be synthesized, consuming 1010 molecules of succinyl-CoA. It has long been assumed that the source of succinyl-coenzyme A (CoA) for heme synthesis in all cell types is the tricarboxylic acid (TCA) cycle. Based upon the observation that 1 subunit of succinyl-CoA synthetase (SCS) physically interacts with the first enzyme of heme synthesis (5-aminolevulinate synthase 2, ALAS2) in erythroid cells, it has been posited that succinyl-CoA for ALA synthesis is provided by the adenosine triphosphate-dependent reverse SCS reaction. We have now demonstrated that this is not the manner by which developing erythroid cells provide succinyl-CoA for ALA synthesis. Instead, during late stages of erythropoiesis, cellular metabolism is remodeled so that glutamine is the precursor for ALA following deamination to α-ketoglutarate and conversion to succinyl-CoA by α-ketoglutarate dehydrogenase (KDH) without equilibration or passage through the TCA cycle. This may be facilitated by a direct interaction between ALAS2 and KDH. Succinate is not an effective precursor for heme, indicating that the SCS reverse reaction does not play a role in providing succinyl-CoA for heme synthesis. Inhibition of succinate dehydrogenase by itaconate, which has been shown in macrophages to dramatically increase the concentration of intracellular succinate, does not stimulate heme synthesis as might be anticipated, but actually inhibits hemoglobinization during late erythropoiesis.


Subject(s)
5-Aminolevulinate Synthetase/metabolism , Acyl Coenzyme A/metabolism , Erythropoiesis/physiology , Glutamine/metabolism , Heme/biosynthesis , Ketoglutarate Dehydrogenase Complex/metabolism , Animals , Cell Line, Tumor , Mice
15.
Proc Natl Acad Sci U S A ; 114(32): E6652-E6659, 2017 08 08.
Article in English | MEDLINE | ID: mdl-28739897

ABSTRACT

Gram-positive bacteria cause the majority of skin and soft tissue infections (SSTIs), resulting in the most common reason for clinic visits in the United States. Recently, it was discovered that Gram-positive pathogens use a unique heme biosynthesis pathway, which implicates this pathway as a target for development of antibacterial therapies. We report here the identification of a small-molecule activator of coproporphyrinogen oxidase (CgoX) from Gram-positive bacteria, an enzyme essential for heme biosynthesis. Activation of CgoX induces accumulation of coproporphyrin III and leads to photosensitization of Gram-positive pathogens. In combination with light, CgoX activation reduces bacterial burden in murine models of SSTI. Thus, small-molecule activation of CgoX represents an effective strategy for the development of light-based antimicrobial therapies.


Subject(s)
Bacterial Proteins/metabolism , Coproporphyrinogen Oxidase/metabolism , Coproporphyrins/biosynthesis , Photosensitizing Agents/metabolism , Phototherapy , Staphylococcal Skin Infections/enzymology , Staphylococcal Skin Infections/therapy , Staphylococcus aureus/metabolism , Animals , Bacterial Proteins/genetics , Coproporphyrinogen Oxidase/genetics , Coproporphyrins/genetics , Disease Models, Animal , Mice , Staphylococcus aureus/genetics
16.
Elife ; 62017 05 29.
Article in English | MEDLINE | ID: mdl-28553927

ABSTRACT

Heme is required for survival of all cells, and in most eukaryotes, is produced through a series of eight enzymatic reactions. Although heme production is critical for many cellular processes, how it is coupled to cellular differentiation is unknown. Here, using zebrafish, murine, and human models, we show that erythropoietin (EPO) signaling, together with the GATA1 transcriptional target, AKAP10, regulates heme biosynthesis during erythropoiesis at the outer mitochondrial membrane. This integrated pathway culminates with the direct phosphorylation of the crucial heme biosynthetic enzyme, ferrochelatase (FECH) by protein kinase A (PKA). Biochemical, pharmacological, and genetic inhibition of this signaling pathway result in a block in hemoglobin production and concomitant intracellular accumulation of protoporphyrin intermediates. Broadly, our results implicate aberrant PKA signaling in the pathogenesis of hematologic diseases. We propose a unifying model in which the erythroid transcriptional program works in concert with post-translational mechanisms to regulate heme metabolism during normal development.


Subject(s)
A Kinase Anchor Proteins/metabolism , Erythropoietin/metabolism , GATA1 Transcription Factor/metabolism , Heme/biosynthesis , Signal Transduction , Animals , Cyclic AMP-Dependent Protein Kinases/metabolism , Humans , Mice , Mitochondrial Membranes/metabolism , Zebrafish
17.
Microbiol Mol Biol Rev ; 81(1)2017 03.
Article in English | MEDLINE | ID: mdl-28123057

ABSTRACT

The advent of heme during evolution allowed organisms possessing this compound to safely and efficiently carry out a variety of chemical reactions that otherwise were difficult or impossible. While it was long assumed that a single heme biosynthetic pathway existed in nature, over the past decade, it has become clear that there are three distinct pathways among prokaryotes, although all three pathways utilize a common initial core of three enzymes to produce the intermediate uroporphyrinogen III. The most ancient pathway and the only one found in the Archaea converts siroheme to protoheme via an oxygen-independent four-enzyme-step process. Bacteria utilize the initial core pathway but then add one additional common step to produce coproporphyrinogen III. Following this step, Gram-positive organisms oxidize coproporphyrinogen III to coproporphyrin III, insert iron to make coproheme, and finally decarboxylate coproheme to protoheme, whereas Gram-negative bacteria first decarboxylate coproporphyrinogen III to protoporphyrinogen IX and then oxidize this to protoporphyrin IX prior to metal insertion to make protoheme. In order to adapt to oxygen-deficient conditions, two steps in the bacterial pathways have multiple forms to accommodate oxidative reactions in an anaerobic environment. The regulation of these pathways reflects the diversity of bacterial metabolism. This diversity, along with the late recognition that three pathways exist, has significantly slowed advances in this field such that no single organism's heme synthesis pathway regulation is currently completely characterized.


Subject(s)
Archaea/metabolism , Bacteria/metabolism , Heme/analogs & derivatives , Iron/chemistry , Tetrapyrroles/biosynthesis , Aminolevulinic Acid/metabolism , Coproporphyrinogen Oxidase/metabolism , Coproporphyrins/metabolism , Heme/biosynthesis , Protoporphyrins/biosynthesis , Protoporphyrins/metabolism , Uroporphyrinogen Decarboxylase/metabolism
18.
Biochem J ; 473(21): 3997-4009, 2016 11 01.
Article in English | MEDLINE | ID: mdl-27597779

ABSTRACT

Bacteria require a haem biosynthetic pathway for the assembly of a variety of protein complexes, including cytochromes, peroxidases, globins, and catalase. Haem is synthesised via a series of tetrapyrrole intermediates, including non-metallated porphyrins, such as protoporphyrin IX, which is well known to generate reactive oxygen species in the presence of light and oxygen. Staphylococcus aureus has an ancient haem biosynthetic pathway that proceeds via the formation of coproporphyrin III, a less reactive porphyrin. Here, we demonstrate, for the first time, that HemY of S. aureus is able to generate both protoporphyrin IX and coproporphyrin III, and that the terminal enzyme of this pathway, HemQ, can stimulate the generation of protoporphyrin IX (but not coproporphyrin III). Assays with hydrogen peroxide, horseradish peroxidase, superoxide dismutase, and catalase confirm that this stimulatory effect is mediated by superoxide. Structural modelling reveals that HemQ enzymes do not possess the structural attributes that are common to peroxidases that form compound I [FeIV==O]+, which taken together with the superoxide data leaves Fenton chemistry as a likely route for the superoxide-mediated stimulation of protoporphyrinogen IX oxidase activity of HemY. This generation of toxic free radicals could explain why HemQ enzymes have not been identified in organisms that synthesise haem via the classical protoporphyrin IX pathway. This work has implications for the divergent evolution of haem biosynthesis in ancestral microorganisms, and provides new structural and mechanistic insights into a recently discovered oxidative decarboxylase reaction.


Subject(s)
Bacterial Proteins/metabolism , Heme/metabolism , Reactive Oxygen Species/metabolism , Staphylococcus aureus/enzymology , Staphylococcus aureus/metabolism , Catalase/metabolism , Coproporphyrinogen Oxidase/metabolism , Coproporphyrins/metabolism , Free Radicals/metabolism , Horseradish Peroxidase/metabolism , Hydrogen Peroxide/metabolism , Models, Chemical , Protoporphyrinogen Oxidase/metabolism , Protoporphyrins/metabolism , Superoxide Dismutase/metabolism
19.
Biotechniques ; 61(2): 83-91, 2016.
Article in English | MEDLINE | ID: mdl-27528073

ABSTRACT

Rapid and accurate heme quantitation in the research lab has become more desirable as the crucial role that intracellular hemoproteins play in metabolism continues to emerge. Here, the time-honored approaches of pyridine hemochromogen and fluorescence heme assays are compared with direct absorbance-based technologies using the CLARiTY spectrophotometer. All samples tested with these methods were rich in hemoglobin-associated heme, including buffered hemoglobin standards, whole blood from mice, and murine erythroleukemia (MEL) and K562 cells. While the pyridine hemochromogen assay demonstrated the greatest linear range of heme detection, all 3 methods demonstrated similar analytical sensitivities and normalized limits of quantitation of ∼1 µM. Surprisingly, the fluorescence assay was only shown to be distinct in its ability to quantitate extremely small samples. Using the CLARiTY system in combination with pyridine hemochromogen and cell count data, a common hemoglobin extinction coefficient for blood and differentiating MEL and K562 cells of 0.46 µM-1 cm-1 was derived. This value was applied to supplemental experiments designed to measure MEL cell hemoglobinization in response to the addition or removal of factors previously shown to affect heme biosynthesis (e.g., L-glutamine, iron).


Subject(s)
Heme/analysis , Heme/chemistry , Hemoglobins/chemistry , Spectrometry, Fluorescence/methods , Animals , Cell Line, Tumor , Equipment Design , Erythrocyte Indices , Female , Heme/analogs & derivatives , Hemoglobins/analysis , Humans , K562 Cells , Limit of Detection , Linear Models , Male , Mice , Reproducibility of Results
20.
PLoS One ; 10(8): e0135896, 2015.
Article in English | MEDLINE | ID: mdl-26287972

ABSTRACT

Heme is an essential cofactor for most organisms and all metazoans. While the individual enzymes involved in synthesis and utilization of heme are fairly well known, less is known about the intracellular trafficking of porphyrins and heme, or regulation of heme biosynthesis via protein complexes. To better understand this process we have undertaken a study of macromolecular assemblies associated with heme synthesis. Herein we have utilized mass spectrometry with coimmunoprecipitation of tagged enzymes of the heme biosynthetic pathway in a developing erythroid cell culture model to identify putative protein partners. The validity of these data obtained in the tagged protein system is confirmed by normal porphyrin/heme production by the engineered cells. Data obtained are consistent with the presence of a mitochondrial heme metabolism complex which minimally consists of ferrochelatase, protoporphyrinogen oxidase and aminolevulinic acid synthase-2. Additional proteins involved in iron and intermediary metabolism as well as mitochondrial transporters were identified as potential partners in this complex. The data are consistent with the known location of protein components and support a model of transient protein-protein interactions within a dynamic protein complex.


Subject(s)
Heme/metabolism , Mitochondria/metabolism , Multiprotein Complexes/metabolism , Porphyrins/metabolism , 5-Aminolevulinate Synthetase/metabolism , ATP-Binding Cassette Transporters/metabolism , Animals , Cell Line, Tumor , Ferrochelatase/metabolism , Heme/biosynthesis , Humans , Mice , Mitochondria/enzymology , Porphyrins/biosynthesis , Protoporphyrinogen Oxidase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...