Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Toxicon ; 148: 149-154, 2018 Jun 15.
Article in English | MEDLINE | ID: mdl-29698757

ABSTRACT

Shiga toxin-producing Escherichia coli (STEC) have been implicated as the cause of enterotoxemias, such as hemolytic uremic syndrome in humans and edema disease (ED) of pigs. Stx1 and Stx2 are the most common types found in association with illness, but only Stx2e is associated with disease in the animal host. Porcine edema disease is a serious affection which can lead to dead causing great losses of weaned piglets. Stx2e is the most frequent Stx variant found in porcine feces and is considered the key virulence factor involved in the pathogenesis of porcine edema disease. Stx2e binds with higher affinity to Gb4 receptor than to Gb3 which could be due to amino acid changes in B subunit. Moreover, this subtype also binds to Forssman glycosphingolipids conferring upon Stx2e a unique promiscuous recognition feature. Manifestations of edema disease are caused by systemic effects of Stx2e with no significant morphologic changes in enterocytes. Endothelial cell necrosis in the brain is an early event in the pathogenesis of ED caused by Stx2e-producing STEC strains. Further studies are needed to generate techniques and tools which allow to understand the circulation and ecology of STEC strains in pigs even in resistant animals for diagnostic and epidemiological purposes.


Subject(s)
Escherichia coli Infections/veterinary , Shiga Toxin 2/toxicity , Shiga-Toxigenic Escherichia coli/pathogenicity , Swine Diseases/microbiology , Animals , Feces/chemistry , Globosides/metabolism , Shiga Toxin 2/chemistry , Swine , Virulence/genetics
2.
Anaerobe ; 48: 83-88, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28764997

ABSTRACT

Iota toxin is a binary toxin solely produced by Clostridium perfringens type E strains, and is structurally related to CDT from C. difficile and CST from C. spiroforme. As type E causes hemorrhagic enteritis in cattle, it is usually assumed that associated diseases are mediated by iota toxin, although evidence in this regard has not been provided. In the present report, iota toxin intestinal effects were evaluated in vivo using a mouse model. Histological damage was observed in ileal loops treated with purified iota toxin after 4 h of incubation. Luminal iota toxin induced fluid accumulation in the small intestine in a dose dependent manner, as determined by the enteropooling and the intestinal loop assays. None of these changes were observed in the large intestine. These results suggest that C. perfringens iota toxin alters intestinal permeability, predominantly by inducing necrosis and degenerative changes in the mucosal epithelium of the small intestine, as well as changes in intestinal motility. The obtained results suggest a central role for iota toxin in the pathogenesis of C. perfringens type E hemorrhagic enteritis, and contribute to remark the importance of clostridial binary toxins in digestive diseases.


Subject(s)
ADP Ribose Transferases/metabolism , Bacterial Toxins/metabolism , Capillary Permeability/physiology , Clostridium perfringens/pathogenicity , Intestinal Mucosa/pathology , Intestine, Large/pathology , Intestine, Small/pathology , Animals , Gastrointestinal Transit/physiology , Intestinal Mucosa/microbiology , Intestine, Large/microbiology , Intestine, Small/metabolism , Intestine, Small/microbiology , Male , Mice , Necrosis/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...