Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 355: 141765, 2024 May.
Article in English | MEDLINE | ID: mdl-38531497

ABSTRACT

Due to the increasing evidence of widespread sub-micron pollutants in the atmosphere, the impact of airborne nanoparticles is a subject of great relevance. In particular, the smallest particles are considered the most active and dangerous, having a higher surface/volume ratio. Here we tested the effect of iron oxide (Fe3O4) nanoparticles (IONPs) with different mean diameter and size distribution on the model plant Tillandsia usneoides. Strands were placed in home-built closed boxes and exposed to levels of airborne IONPs reported for the roadside air, i.e. in the order of 107 - 108 items m-2. Plant growth and other morpho-physiological parameters were monitored for two weeks, showing that exposure to IONPs significantly reduced the length increment of the treated strands with respect to controls. A dose-dependence of this impairing effect was found only for particles with mean size of a few tens of nanometers. These were also proved to be the most toxic at the highest concentration tested. The IONP-induced hamper in growth was correlated with altered concentration of macro- and micronutrients in the plant, while no significant variation in photosynthetic activity was detected in treated samples. Microscopy investigation showed that IONPs could adhere to the plant surface and were preferentially located on the trichome wings. Our results report, for the first time, evidence of the negative effects of airborne IONP pollution on plant health, thus raising concerns about related environmental risks. Future research should be devoted to other plant species and pollutants to assess the impact of airborne pollution on plants and devise suitable attenuation practices.


Subject(s)
Air Pollutants , Tillandsia , Animals , Air Pollutants/toxicity , Air Pollutants/analysis , Environmental Monitoring/methods , Environmental Pollution , Magnetic Iron Oxide Nanoparticles
2.
Plant Physiol Biochem ; 207: 108403, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38290343

ABSTRACT

The effects of polyethylene terephthalate micro-nanoplastics (PET-MNPs) were tested on the model freshwater species Spirodela polyrhiza (L.) Schleid., with focus on possible particle-induced epigenetic effects (i.e. alteration of DNA methylation status). MNPs (size âˆ¼ 200-300 nm) were produced as water dispersions from PET bottles through repeated cycles of homogenization and used to prepare N-medium at two environmentally relevant concentrations (∼0.05 g L-1 and ∼0.1 g L-1 of MNPs). After 10 days of exposure, a reduction in fresh and dry weight was observed in treated plants, even if the average specific growth rate for both frond number and area was not altered. Impaired growth was coupled with a MNP-induced decrease of chlorophyll fluorescence parameters (i.e. ΨETo and Piabs, indicators of photochemical efficiency) and starch concentration, as well as with alterations in plant ionomic profile and oxidative status. The methylation-sensitive amplification polymorphism (MSAP) technique was used to assess possible changes in DNA methylation levels induced by plastic particles. The analysis showed unusual hypermethylation in 5'-CCGG sites that could be implicated in DNA protection from dangerous agents (i.e. reactive oxygen species) or in the formation of new epialleles. This work represents the first evidence of MNP-induced epigenetic modifications in the plant world.


Subject(s)
DNA Methylation , Microplastics , DNA Methylation/genetics , Reactive Oxygen Species/metabolism , Epigenesis, Genetic , Polymorphism, Genetic
3.
Sci Total Environ ; 895: 165119, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37364840

ABSTRACT

Solanum lycopersicum L., a crop grown worldwide with a high nutritional value for the human diet, was used to test the impact of microplastics on plant growth, productivity, and fruit quality. Two of the most represented microplastics in soils, polyethylene terephthalate (PET) and polyvinyl chloride (PVC), were tested. Plants were grown in pots with an environmentally realistic concentration of microplastics and, during the whole crop life cycle, photosynthetic parameters, number of flowers and fruits were monitored. At the end of the cultivation, plant biometry and ionome were evaluated, along with fruit production and quality. Both pollutants had negligible effects on shoot traits, with only PVC causing a significant reduction in shoot fresh weight. Despite an apparent low or no toxicity during the vegetative stage, both microplastics decreased the number of fruits and, in the case of PVC, also their fresh weights. The plastic polymer-induced decline in fruit production was coupled with wide variations in fruit ionome, with marked increases in Ni and Cd. By contrast there was a decline in the nutritionally valuable lycopene, total soluble solids, and total phenols. Altogether, our results reveal that microplastics can not only limit crop productivity but also negatively impact fruit quality and enhance the concentration of food safety hazards, thus raising concerns for their potential health risks for humans.


Subject(s)
Fruit , Microplastics , Humans , Lycopene , Plastics , Polyethylene Terephthalates
4.
J Hazard Mater ; 438: 129450, 2022 09 15.
Article in English | MEDLINE | ID: mdl-35999715

ABSTRACT

In the era of plastic pollution, plants have been discarded as a system that is not affected by micro and nanoplastics, but contrary to beliefs that plants cannot absorb plastic particles, recent research proved otherwise. The presented review gives insight into known aspects of plants' interplay with plastics and how plants' ability to absorb plastic particles can be utilized to remove plastics from water and soil systems. Microplastics usually cannot be absorbed by plant root systems due to their size, but some reports indicate they might enter plant tissues through stomata. On the other hand, nanoparticles can enter plant root systems, and reports of their transport via xylem to upper plant parts have been recorded. Bioaccumulation of nanoplastics in upper plant parts is still not confirmed. The prospects of using biosystems for the remediation of soils contaminated with plastics are still unknown. However, algae could be used to degrade plastic particles in water systems through enzyme facilitated degradation processes. Considering the amount of plastic pollution, especially in the oceans, further research is necessary on the utilization of algae in plastic degradation. Special attention should be given to the research concerning utilization of algae with restricted algal growth, ensuring that a different problem is not induced, "sea blooming", during the degradation of plastics.


Subject(s)
Plastics , Water Pollutants, Chemical , Environmental Pollution , Microplastics/toxicity , Soil , Water , Water Pollutants, Chemical/analysis
5.
J Hazard Mater ; 437: 129314, 2022 09 05.
Article in English | MEDLINE | ID: mdl-35728311

ABSTRACT

Due to the increasing evidence of widespread plastic pollution in the air, the impact on plants of airborne particles of polycarbonate (PC), polyethyleneterephthalate (PET), polyethylene (PE), and polyvinylchloride (PVC) was tested by administering pristine and aged airborne micro-nanoplastics (MNPs) to Tillandsia usneoides for two weeks. Here we showed that exposure to pristine MNPs, significantly reduced plant growth with respect to controls. Particularly, PVC almost halved plant development at the end of the treatment, while the other plastics exerted negative effects on growth only at the beginning of the exposure, with final stages comparable to those of controls. Plants exposed to aged MNPs showed significantly decreased growth at early stages with PC, later in the growth with PE, and even later with PET. Aged PVC did not exert a toxic effect on plants. When present, the plastic-mediated reduction in plant growth was coupled with a decrease in photosynthetic activity and alterations in the plant concentration of macro- and micronutrients. The plastic particles were showed to adhere to the plant surface and, preferentially, on the trichome wings. Our results reported, for the first time, evidence of negative effects of airborne plastic pollution on plant health, thus raising concerns for related environmental risks.


Subject(s)
Bromeliaceae , Tillandsia , Animals , Environmental Monitoring/methods , Microplastics , Plastics/toxicity , Polyvinyl Chloride/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...