Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 115(37): 9276-9281, 2018 09 11.
Article in English | MEDLINE | ID: mdl-30150400

ABSTRACT

This study demonstrates that significantly shortened telomeres are a hallmark of cardiomyocytes (CMs) from individuals with end-stage hypertrophic cardiomyopathy (HCM) or dilated cardiomyopathy (DCM) as a result of heritable defects in cardiac proteins critical to contractile function. Positioned at the ends of chromosomes, telomeres are DNA repeats that serve as protective caps that shorten with each cell division, a marker of aging. CMs are a known exception in which telomeres remain relatively stable throughout life in healthy individuals. We found that, relative to healthy controls, telomeres are significantly shorter in CMs of genetic HCM and DCM patient tissues harboring pathogenic mutations: TNNI3, MYBPC3, MYH7, DMD, TNNT2, and TTN Quantitative FISH (Q-FISH) of single cells revealed that telomeres were significantly reduced by 26% in HCM and 40% in DCM patient CMs in fixed tissue sections compared with CMs from age- and sex-matched healthy controls. In the cardiac tissues of the same patients, telomere shortening was not evident in vascular smooth muscle cells that do not express or require the contractile proteins, an important control. Telomere shortening was recapitulated in DCM and HCM CMs differentiated from patient-derived human-induced pluripotent stem cells (hiPSCs) measured by two independent assays. This study reveals telomere shortening as a hallmark of genetic HCM and DCM and demonstrates that this shortening can be modeled in vitro by using the hiPSC platform, enabling drug discovery.


Subject(s)
Cardiomyopathy, Dilated , Cardiomyopathy, Hypertrophic, Familial , Cell Division , Induced Pluripotent Stem Cells , Muscle Proteins , Mutation , Telomere Shortening , Cardiomyopathy, Dilated/genetics , Cardiomyopathy, Dilated/metabolism , Cardiomyopathy, Dilated/pathology , Cardiomyopathy, Hypertrophic, Familial/genetics , Cardiomyopathy, Hypertrophic, Familial/metabolism , Cardiomyopathy, Hypertrophic, Familial/pathology , Female , Humans , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/pathology , Male , Muscle Proteins/genetics , Muscle Proteins/metabolism
2.
JACC Basic Transl Sci ; 3(2): 313-326, 2018 Apr.
Article in English | MEDLINE | ID: mdl-30062216

ABSTRACT

Precision medicine strives to delineate disease using multiple data sources-from genomics to digital health metrics-in order to be more precise and accurate in our diagnoses, definitions, and treatments of disease subtypes. By defining disease at a deeper level, we can treat patients based on an understanding of the molecular underpinnings of their presentations, rather than grouping patients into broad categories with one-size-fits-all treatments. In this review, the authors examine how precision medicine, specifically that surrounding genetic testing and genetic therapeutics, has begun to make strides in both common and rare cardiovascular diseases in the clinic and the laboratory, and how these advances are beginning to enable us to more effectively define risk, diagnose disease, and deliver therapeutics for each individual patient.

3.
Nature ; 481(7379): 76-80, 2011 Dec 04.
Article in English | MEDLINE | ID: mdl-22139422

ABSTRACT

Discriminating among sensory stimuli is critical for animal survival. This discrimination is particularly essential when evaluating whether a stimulus is noxious or innocuous. From insects to humans, transient receptor potential (TRP) channels are key transducers of thermal, chemical and other sensory cues. Many TRPs are multimodal receptors that respond to diverse stimuli, but how animals distinguish sensory inputs activating the same TRP is largely unknown. Here we determine how stimuli activating Drosophila TRPA1 are discriminated. Although Drosophila TRPA1 responds to both noxious chemicals and innocuous warming, we find that TRPA1-expressing chemosensory neurons respond to chemicals but not warmth, a specificity conferred by a chemosensory-specific TRPA1 isoform with reduced thermosensitivity compared to the previously described isoform. At the molecular level, this reduction results from a unique region that robustly reduces the channel's thermosensitivity. Cell-type segregation of TRPA1 activity is critical: when the thermosensory isoform is expressed in chemosensors, flies respond to innocuous warming with regurgitation, a nocifensive response. TRPA1 isoform diversity is conserved in malaria mosquitoes, indicating that similar mechanisms may allow discrimination of host-derived warmth--an attractant--from chemical repellents. These findings indicate that reducing thermosensitivity can be critical for TRP channel functional diversification, facilitating their use in contexts in which thermal sensitivity can be maladaptive.


Subject(s)
Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Hot Temperature , TRPC Cation Channels/metabolism , Amino Acid Sequence , Animals , Conserved Sequence , Culicidae/metabolism , Drosophila Proteins/chemistry , Drosophila Proteins/genetics , Drosophila melanogaster/cytology , Drosophila melanogaster/genetics , Humans , Insect Repellents/pharmacology , Ion Channels , Molecular Sequence Data , Oocytes , Organ Specificity , Protein Isoforms/chemistry , Protein Isoforms/genetics , Protein Isoforms/metabolism , Sensory Receptor Cells/metabolism , Sequence Alignment , Signal Transduction , TRPA1 Cation Channel , TRPC Cation Channels/chemistry , TRPC Cation Channels/genetics , Xenopus laevis
SELECTION OF CITATIONS
SEARCH DETAIL