Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters











Publication year range
1.
Transl Oncol ; 15(1): 101239, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34649149

ABSTRACT

BACKGROUND: GNMT (glycine N-methyltransferase) is a tumor suppressor gene, but the mechanisms mediating its suppressive activity are not entirely known. METHODS: We investigated the oncosuppressive mechanisms of GNMT in human hepatocellular carcinoma (HCC). GNMT mRNA and protein levels were evaluated by quantitative RT-PCR and immunoblotting. GNMT effect in HCC cell lines was modulated through GNMT cDNA induced overexpression or anti-GNMT siRNA transfection. RESULTS: GNMT was expressed at low level in human HCCs with a better prognosis (HCCB) while it was almost absent in fast-growing tumors (HCCP). In HCCB, the nuclear localization of the GNMT protein was much more pronounced than in HCCP. In Huh7 and HepG2 cell lines, GNMT forced expression inhibited the proliferation and promoted apoptosis. At the molecular level, GNMT overexpression inhibited the expression of CYP1A (Cytochrome p450, aromatic compound-inducible), PREX2 (Phosphatidylinositol-3,4,5-trisphosphate-dependent Rac exchange factor 2), PARP1 [Poly (ADP-ribose) polymerase 1], and NFKB (nuclear factor-kB) genes. By chromatin immunoprecipitation, we found GNMT binding to the promoters of CYP1A1, PREX2, PARP1, and NFKB genes resulting in their strong inhibition. These genes are implicated in hepatocarcinogenesis, and are involved in the GNMT oncosuppressive action. CONCLUSION: Overall, the present data indicate that GNMT exerts a multifaceted suppressive action by interacting with various cancer-related genes and inhibiting their expression.

2.
Oncotarget ; 7(31): 49194-49216, 2016 Aug 02.
Article in English | MEDLINE | ID: mdl-27359056

ABSTRACT

Previous studies showed that YAP1 is over-expressed in hepatocellular carcinoma (HCC). Here we observed higher expression of Yap1/Ctgf axis in dysplastic nodules and HCC chemically-induced in F344 rats, genetically susceptible to hepatocarcinogenesis, than in lesions induced in resistant BN rats. In BN rats, highest increase in Yap1-tyr357, p73 phosphorylation and Caspase 3 cleavage occurred. In human HCCs with poorer prognosis (< 3 years survival after partial liver resection, HCCP), levels of YAP1, CTGF, 14-3-3, and TEAD proteins, and YAP1-14-3-3 and YAP1-TEAD complexes were higher than in HCCs with better outcome (> 3 years survival; HCCB). In the latter, higher levels of phosphorylated YAP1-ser127, YAP1-tyr357 and p73, YAP1 ubiquitination, and Caspase 3 cleavage occurred. Expression of stemness markers NANOG, OCT-3/4, and CD133 were highest in HCCP and correlated with YAP1 and YAP1-TEAD levels. In HepG2, Huh7, and Hep3B cells, forced YAP1 over-expression led to stem cell markers expression and increased cell viability, whereas inhibition of YAP1 expression by specific siRNA, or transfection of mutant YAP1 which does not bind to TEAD, induced opposite alterations. These changes were associated, in Huh7 cells transfected with YAP1 or YAP1 siRNA, with stimulation or inhibition of cell migration and invasivity, respectively. Furthermore, transcriptome analysis showed that YAP1 transfection in Huh7 cells induces over-expression of genes involved in tumor stemness. In conclusion, Yap1 post-translational modifications favoring its ubiquitination and apoptosis characterize HCC with better prognosis, whereas conditions favoring the formation of YAP1-TEAD complexes are associated with aggressiveness and acquisition of stemness features by HCC cells.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Apoptosis Regulatory Proteins/metabolism , DNA-Binding Proteins/metabolism , Liver Neoplasms/metabolism , Nuclear Proteins/metabolism , Phosphoproteins/metabolism , Protein Processing, Post-Translational , Transcription Factors/metabolism , Animals , Caspase 3/metabolism , Cell Lineage , Cell Proliferation , Cell Survival , Disease Models, Animal , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Hep G2 Cells , Humans , Liver Neoplasms/pathology , Neoplastic Stem Cells/cytology , Oligonucleotide Array Sequence Analysis , Phosphorylation , Prognosis , RNA, Small Interfering/metabolism , Rats , Rats, Inbred F344 , TEA Domain Transcription Factors , YAP-Signaling Proteins
3.
Cell Oncol (Dordr) ; 35(3): 163-73, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22434528

ABSTRACT

BACKGROUND AND AIMS: Hepatocarcinogenesis is under polygenic control. We analyzed gene expression patterns of dysplastic liver nodules (DNs) and hepatocellular carcinomas (HCCs) chemically-induced in F344 and BN rats, respectively susceptible and resistant to hepatocarcinogenesis. METHODS: Expression profiles were performed by microarray and validated by quantitative RT-PCR and Western blot. RESULTS: Cluster analysis revealed two distinctive gene expression patterns, the first of which included normal liver of both strains and BN nodules, and the second one F344 nodules and HCC of both strains. We identified a signature predicting DN and HCC progression, characterized by highest expression of oncosuppressors Csmd1, Dmbt1, Dusp1, and Gnmt, in DNs, and Bhmt, Dmbt1, Dusp1, Gadd45g, Gnmt, Napsa, Pp2ca, and Ptpn13 in HCCs of resistant rats. Integrated gene expression data revealed highest expression of proliferation-related CTGF, c-MYC, and PCNA, and lowest expression of BHMT, DMBT1, DUSP1, GADD45g, and GNMT, in more aggressive rat and human HCC. BHMT, DUSP1, and GADD45g expression predicted patients' survival. CONCLUSIONS: Our results disclose, for the first time, a major role of oncosuppressor genes as effectors of genetic resistance to hepatocarcinogenesis. Comparative functional genomic analysis allowed discovering an evolutionarily conserved gene expression signature discriminating HCC with different propensity to progression in rat and human.


Subject(s)
Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Disease Resistance/genetics , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Animals , Cell Proliferation , Cell Survival/genetics , Cluster Analysis , Humans , Liver/metabolism , Liver/pathology , Oligonucleotide Array Sequence Analysis , Phenotype , Rats , Rats, Inbred BN , Rats, Inbred F344 , Real-Time Polymerase Chain Reaction , Reproducibility of Results , Species Specificity
4.
Hepatology ; 56(1): 165-75, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22318685

ABSTRACT

UNLABELLED: Down-regulation of the liver-specific MAT1A gene, encoding S-adenosylmethionine (SAM) synthesizing isozymes MATI/III, and up-regulation of widely expressed MAT2A, encoding MATII isozyme, known as MAT1A:MAT2A switch, occurs in hepatocellular carcinoma (HCC). Here we found Mat1A:Mat2A switch and low SAM levels, associated with CpG hypermethylation and histone H4 deacetylation of Mat1A promoter, and prevalent CpG hypomethylation and histone H4 acetylation in Mat2A promoter of fast-growing HCC of F344 rats, genetically susceptible to hepatocarcinogenesis. In HCC of genetically resistant BN rats, very low changes in the Mat1A:Mat2A ratio, CpG methylation, and histone H4 acetylation occurred. The highest MAT1A promoter hypermethylation and MAT2A promoter hypomethylation occurred in human HCC with poorer prognosis. Furthermore, levels of AUF1 protein, which destabilizes MAT1A messenger RNA (mRNA), Mat1A-AUF1 ribonucleoprotein, HuR protein, which stabilizes MAT2A mRNA, and Mat2A-HuR ribonucleoprotein sharply increased in F344 and human HCC, and underwent low/no increase in BN HCC. In human HCC, Mat1A:MAT2A expression and MATI/III:MATII activity ratios correlated negatively with cell proliferation and genomic instability, and positively with apoptosis and DNA methylation. Noticeably, the MATI/III:MATII ratio strongly predicted patient survival length. Forced MAT1A overexpression in HepG2 and HuH7 cells led to a rise in the SAM level, decreased cell proliferation, increased apoptosis, down-regulation of Cyclin D1, E2F1, IKK, NF-κB, and antiapoptotic BCL2 and XIAP genes, and up-regulation of BAX and BAK proapoptotic genes. In conclusion, we found for the first time a post-transcriptional regulation of MAT1A and MAT2A by AUF1 and HuR in HCC. Low MATI/III:MATII ratio is a prognostic marker that contributes to determine a phenotype susceptible to HCC and patients' survival. CONCLUSION: Interference with cell cycle progression and I-kappa B kinase (IKK)/nuclear factor kappa B (NF-κB) signaling contributes to the antiproliferative and proapoptotic effect of high SAM levels in HCC.


Subject(s)
Carcinoma, Hepatocellular/enzymology , Liver Neoplasms/enzymology , Methionine Adenosyltransferase/genetics , Transcriptional Activation , Animals , Binding Sites , Carcinoma, Hepatocellular/pathology , DNA Methylation , Disease Models, Animal , Disease Progression , Down-Regulation , Gene Expression Regulation, Enzymologic , Humans , Liver/metabolism , Liver Neoplasms/pathology , Methionine Adenosyltransferase/metabolism , Multivariate Analysis , Prognosis , Promoter Regions, Genetic , Proportional Hazards Models , RNA, Messenger/metabolism , Rats , Rats, Inbred BN , Rats, Inbred F344 , S-Adenosylmethionine/metabolism , Statistics, Nonparametric , Tumor Cells, Cultured
5.
Hepatology ; 53(4): 1226-36, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21480327

ABSTRACT

UNLABELLED: Up-regulation of the v-Myb avian myeloblastosis viral oncogene homolog-like2 B-Myb (MYBL2) gene occurs in human hepatocellular carcinoma (HCC) and is associated with faster progression of rodent hepatocarcinogenesis. We evaluated, in distinct human HCC prognostic subtypes (as defined by patient survival length), activation of MYBL2 and MYBL2-related genes, and relationships of p53 status with MYBL2 activity. Highest total and phosphorylated protein levels of MYBL2, E2F1-DP1, inactivated retinoblastoma protein (pRB), and cyclin B1 occurred in HCC with poorer outcome (HCCP), compared to HCC with better outcome (HCCB). In HCCP, highest LIN9-MYBL2 complex (LINC) and lowest inactive LIN9-p130 complex levels occurred. MYBL2 positively correlated with HCC genomic instability, proliferation, and microvessel density, and negatively with apoptosis. Higher MYBL2/LINC activation in HCC with mutated p53 was in contrast with LINC inactivation in HCC harboring wildtype p53. Small interfering RNA (siRNA)-mediated MYBL2/LINC silencing reduced proliferation, induced apoptosis, and DNA damage at similar levels in HCC cell lines, irrespective of p53 status. However, association of MYBL2/LINC silencing with doxorubicin-induced DNA damage caused stronger growth restraint in p53(-/-) Huh7 and Hep3B cells than in p53(+/+) Huh6 and HepG2 cells. Doxorubicin triggered LIN9 dissociation from MYBL2 in p53(+/+) cell lines and increased MYBL2-LIN9 complexes in p53(-/-) cells. Doxorubicin-induced MYBL2 dissociation from LIN9 led to p21(WAF1) up-regulation in p53(+/+) but not in p53(-/-) cell lines. Suppression of p53 or p21(WAF1) genes abolished DNA damage response, enhanced apoptosis, and inhibited growth in doxorubicin-treated cells harboring p53(+/+) . CONCLUSION: We show that MYBL2 activation is crucial for human HCC progression. In particular, our data indicate that MYBL2-LIN9 complex integrity contributes to survival of DNA damaged p53(-/-) cells. Thus, MYBL2 inhibition could represent a valuable adjuvant for treatments against human HCC with mutated p53.


Subject(s)
Carcinoma, Hepatocellular/genetics , Cell Cycle Proteins/physiology , Liver Neoplasms/genetics , Nuclear Proteins/physiology , Trans-Activators/physiology , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Proteins/physiology , Cell Line, Tumor , DNA Damage , Disease Progression , Doxorubicin/pharmacology , Genomic Instability , Humans , Tumor Suppressor Protein p53/metabolism , Up-Regulation
6.
J Hepatol ; 55(1): 111-9, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21419759

ABSTRACT

BACKGROUND & AIMS: MYBL2 is implicated in human malignancies and over expressed in hepatocellular carcinoma (HCC). We investigated Mybl2 role in the acquisition of susceptibility to HCC and tumor progression. METHODS: MYBL2 mRNA and protein levels were evaluated by quantitative RT-PCR and immunoblotting, respectively. MYBL2 expression in HCC cell lines was controlled through MYBL2 cDNA or anti-MYBL2 siRNA transfection. Gene expression profile of cells transfected with MYBL2 was analyzed by microarray. RESULTS: Low induction of Mybl2 and its target Clusterin mRNAs, in low-grade dysplastic nodules (DN), progressively increased in fast growing high-grade DN and HCC of F344 rats, susceptible to hepatocarcinogenesis, whereas no/lower increases occurred in slow growing lesions of resistant BN rats. Highest Mybl2 protein activation, prevalently nuclear, occurred in F344 than BN lesions. Highest Mybl2, Clusterin, Cdc2, and Cyclin B1 expression occurred in fast progressing DN and HCC of E2f1 transgenics, compared to c-Myc transgenics, and anti-Mybl2 siRNA had highest anti-proliferative and apoptogenic effects in cell lines from HCC of E2f1 transgenics. MYBL2 transfected HepG2 and Huh7 cells exhibited increased cell proliferation and G1-S and G2-M cell cycle phases. The opposite occurred when MYBL2 was silenced by specific siRNA. MYBL2 transfection in Huh7 cells led to upregulation of genes involved in signal transduction, cell proliferation, cell motility, and downregulation of oncosuppressor and apoptogenic genes. CONCLUSIONS: mybl2 expression and activation are under genetic control. Mybl2 upregulation induces fast growth and progression of premalignant and malignant liver, through cell cycle deregulation and activation of genes and pathways related to tumor progression.


Subject(s)
Carcinoma, Hepatocellular/genetics , Cell Cycle Proteins/genetics , Liver Neoplasms/genetics , Trans-Activators/genetics , Transcription Factors/genetics , Animals , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Cell Cycle , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Cell Proliferation , Disease Progression , E2F1 Transcription Factor/genetics , E2F1 Transcription Factor/metabolism , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Genes, myb , Genetic Predisposition to Disease , Hep G2 Cells , Humans , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Liver Neoplasms, Experimental/genetics , Liver Neoplasms, Experimental/metabolism , Liver Neoplasms, Experimental/pathology , Male , Mice , Mice, Transgenic , Oligonucleotide Array Sequence Analysis , Phenotype , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Neoplasm/genetics , RNA, Neoplasm/metabolism , RNA, Small Interfering/genetics , Rats , Rats, Inbred BN , Rats, Inbred F344 , Signal Transduction , Trans-Activators/metabolism , Transcription Factors/metabolism
7.
Int J Cancer ; 123(9): 2057-64, 2008 Nov 01.
Article in English | MEDLINE | ID: mdl-18697198

ABSTRACT

Fast growth and deregulation of G1 and S phases characterize preneoplastic and neoplastic liver lesions of genetically susceptible F344 rats, whereas a G1-S block in lesions of resistant BN rats explains their low progression capacity. However, signal transduction pathways responsible for the different propensity of lesions from the 2 rat strains to evolve to malignancy remain unknown. Here, we comparatively investigated the role of Ras/Erk pathway inhibitors, involved in growth restraint and cell death, in the acquisition of a phenotype resistant or susceptible to hepatocarcinogenesis. Moderate activation of Ras, Raf-1 and Mek proteins was paralleled in both rat models by strong induction of Dab2 and Rkip inhibitors. Levels of Dusp1, a specific ERK inhibitor, increased only in BN rat lesions, leading to modest ERK activation, whereas a progressive Dusp1 decline occurred in corresponding lesions from F344 rats and was accompanied by elevated ERK activation. Furthermore, a gradual increase of Rassf1A/Nore1A/Mst1-driven apoptosis was detected in both rat strains, with highest levels in BN hepatocellular carcinoma (HCC), whereas loss of Dab2IP, a protein implicated in ASK1-dependent cell death, occurred only in F344 rat HCC, resulting in significantly higher apoptosis in BN than F344 HCC. Taken together, our results indicate a control of the Ras/Erk pathway and the pro-apoptotic Rassf1A/Nore1A and Dab2IP/Ask1 pathways by HCC susceptibility genes. Dusp1 possesses a prominent role in the acquisition of the phenotype resistant to HCC by BN rats, whereas late activation of RassF1A/Nore1A and Dab2IP/Ask1 axes is implicated in the highest apoptosis characteristic of BN HCC.


Subject(s)
Apoptosis , Extracellular Signal-Regulated MAP Kinases/physiology , Genetic Predisposition to Disease , Liver Neoplasms, Experimental/genetics , Liver Neoplasms, Experimental/pathology , Signal Transduction/physiology , ras Proteins/physiology , Adaptor Proteins, Vesicular Transport/antagonists & inhibitors , Animals , Cell Proliferation , Dual Specificity Phosphatase 1/analysis , MAP Kinase Kinase Kinase 5/physiology , Precancerous Conditions/pathology , Rats , Rats, Inbred BN , Rats, Inbred F344
8.
Carcinogenesis ; 29(8): 1639-47, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18579559

ABSTRACT

Mounting evidence underlines the role of inducible nitric oxide synthase (iNOS) in hepatocellular carcinoma (HCC) development, but its functional interactions with pathways involved in HCC progression remain uninvestigated. Here, we analyzed in preneoplastic and neoplastic livers from Fisher 344 and Brown Norway rats, possessing different genetic predisposition to HCC, in transforming growth factor-alpha (TGF-alpha) and c-Myc-TGF-alpha transgenic mice, characterized by different susceptibility to HCC, and in human HCC: (i) iNOS function and interactions with nuclear factor-kB (NF-kB) and Ha-RAS/extracellular signal-regulated kinase (ERK) during hepatocarcinogenesis; (ii) influence of genetic predisposition to liver cancer on these pathways and role of these cascades in determining a susceptible or resistant phenotype and (iii) iNOS prognostic value in human HCC. We found progressive iNos induction in rat and mouse liver lesions, always at higher levels in the most aggressive models represented by HCC of rats genetically susceptible to hepatocarcinogenesis and c-Myc-TGF-alpha transgenic mice. iNOS, inhibitor of kB kinase/NF-kB and RAS/ERK upregulation was significantly higher in HCC with poorer prognosis (as defined by patients' survival length) and positively correlated with tumor proliferation, genomic instability and microvascularization and negatively with apoptosis. Suppression of iNOS signaling by aminoguanidine led to decreased HCC growth and NF-kB and RAS/ERK expression and increased apoptosis both in vivo and in vitro. Conversely, block of NF-kB signaling by sulfasalazine or short interfering RNA (siRNA) or ERK signaling by UO126 caused iNOS downregulation in HCC cell lines. These findings indicate that iNOS cross talk with NF-kB and Ha-RAS/ERK cascades influences HCC growth and prognosis, suggesting that key component of iNOS signaling could represent important therapeutic targets for human HCC.


Subject(s)
Carcinoma, Hepatocellular/genetics , Liver Neoplasms/enzymology , Liver Neoplasms/genetics , Nitric Oxide Synthase Type II/genetics , Signal Transduction/physiology , Animals , Carcinoma, Hepatocellular/enzymology , Carcinoma, Hepatocellular/epidemiology , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Genetic Predisposition to Disease , Humans , Incidence , Liver Neoplasms/epidemiology , Liver Neoplasms/pathology , Male , Mice , Mice, Transgenic , Prognosis , Rats , Rats, Inbred BN , Rats, Inbred F344
9.
Cancer Res ; 68(11): 4192-200, 2008 Jun 01.
Article in English | MEDLINE | ID: mdl-18519678

ABSTRACT

Sustained activation of extracellular signal-regulated kinase (ERK) has been detected previously in numerous tumors in the absence of RAS-activating mutations. However, the molecular mechanisms responsible for ERK-unrestrained activity independent of RAS mutations remain unknown. Here, we evaluated the effects of the functional interactions of ERK proteins with dual-specificity phosphatase 1 (DUSP1), a specific inhibitor of ERK, and S-phase kinase-associated protein 2 (SKP2)/CDC28 protein kinase 1b (CKS1) ubiquitin ligase complex in human hepatocellular carcinoma (HCC). Levels of DUSP1, as assessed by real-time reverse transcription-PCR and Western blot analysis, were significantly higher in tumors with better prognosis (as defined by the length of patients' survival) when compared with both normal and nontumorous surrounding livers, whereas DUSP1 protein expression sharply declined in all HCC with poorer prognosis. In the latter HCC subtype, DUSP1 inactivation was due to either ERK/SKP2/CKS1-dependent ubiquitination or promoter hypermethylation associated with loss of heterozygosity at the DUSP1 locus. Noticeably, expression levels of DUSP1 inversely correlated with those of activated ERK, as well as with proliferation index and microvessel density, and directly with apoptosis and survival rate. Subsequent functional studies revealed that DUSP1 reactivation led to suppression of ERK, CKS1, and SKP2 activity, inhibition of proliferation and induction of apoptosis in human hepatoma cell lines. Taken together, the present data indicate that ERK achieves unrestrained activity during HCC progression by triggering ubiquitin-mediated proteolysis of its specific inhibitor DUSP1. Thus, DUSP1 may represent a valuable prognostic marker and ERK, CKS1, or SKP2 potential therapeutic targets for human HCC.


Subject(s)
Carcinoma, Hepatocellular/pathology , Cell Division , Dual Specificity Phosphatase 1/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Liver Neoplasms/pathology , Ubiquitin/metabolism , Blotting, Western , Carcinoma, Hepatocellular/enzymology , Enzyme Activation , Humans , Immunoprecipitation , Liver Neoplasms/enzymology , Reverse Transcriptase Polymerase Chain Reaction
10.
Cancer Res ; 66(21): 10384-90, 2006 Nov 01.
Article in English | MEDLINE | ID: mdl-17079458

ABSTRACT

Hepatocellular carcinoma (HCC) is prevalent in human and rodent males. Hepatocarcinogenesis is controlled by various genes in susceptible F344 and resistant Brown Norway (BN) rats. B alleles at Hcs4 locus, on RNO16, control neoplastic nodule volume. We constructed the F344.BN-Hcs4 recombinant congenic strain (RCS) by introgressing a 4.41-cM portion of Hcs4 from BN strain in an isogenic F344 background. Preneoplastic and neoplastic lesions were induced by the "resistant hepatocyte" protocol. Eight weeks after initiation, lesion volume and positivity for proliferating cell nuclear antigen (PCNA) were much higher in lesions of F344 than BN rats of both sexes. These variables were lower in females than in males. Lesion volume and PCNA values of male RCS were similar to those of F344 rats, but in females corresponded to those of BN females. Carcinomatous nodules and HCC developed at 32 and 60 weeks, respectively, in male F344 and congenics and, rarely, in F344 females. BN and congenic females developed only eosinophilic/clear cells nodules. Gonadectomy of congenic males, followed by beta-estradiol administration, caused a decrease in Ar expression, an increase in Er-alpha expression, and development of preneoplastic lesions comparable to those from BN females. Administration of testosterone to gonadectomized females led to Ar increase and development of preneoplastic lesions as in F344 males. This indicates a role of homozygous B alleles at Hcs4 in the determination of phenotypic patterns of female RCS and presence at Hcs4 locus of a high penetrance gene(s), activated by estrogens and inhibited/unaffected by testosterone, conferring resistance to females in which the B alleles provide higher resistance.


Subject(s)
Chromosome Mapping , Genetic Predisposition to Disease , Gonadal Steroid Hormones/pharmacology , Liver Neoplasms, Experimental/genetics , Animals , Estrogen Receptor alpha/genetics , Female , Male , Rats , Rats, Inbred BN , Rats, Inbred F344 , Receptors, Androgen/genetics , Recombination, Genetic , Sex Factors
11.
Hepatology ; 42(6): 1310-9, 2005 Dec.
Article in English | MEDLINE | ID: mdl-16317707

ABSTRACT

Current evidence indicates that neoplastic nodules induced in liver of Brown Norway (BN) rats genetically resistant to hepatocarcinogenesis are not prone to evolve into hepatocellular carcinoma. We show that BN rats subjected to diethylnitrosamine/2-acetylaminofluorene/partial hepatectomy treatment with a "resistant hepatocyte" protocol displayed higher number of glutathione-S-transferase 7-7(+) hepatocytes when compared with susceptible Fisher 344 (F344) rats, both during and at the end of 2-acetylaminofluorene treatment. However, DNA synthesis declined in BN but not F344 rats after completion of reparative growth. Upregulation of p16(INK4A), Hsp90, and Cdc37 genes; an increase in Cdc37-Cdk4 complexes; and a decrease in p16(INK4A)-Cdk4 complexes occurred in preneoplastic liver, nodules, and hepatocellular carcinoma of F344 rats. These parameters did not change significantly in BN rats. E2f4 was equally expressed in the lesions of both strains, but Crm1 expression and levels of E2f4-Crm1 complex were higher in F344 rats. Marked upregulation of P16(INK4A) was associated with moderate overexpression of HSP90, CDC37, E2F4, and CRM1 in human hepatocellular carcinomas with a better prognosis. In contrast, strong induction of HSP90, CDC37, and E2F4 was paralleled by P16(INK4A) downregulation and high levels of HSP90-CDK4 and CDC37-CDK4 complexes in hepatocellular carcinomas with poorer prognosis. CDC37 downregulation by small interfering RNA inhibited in vitro growth of HepG2 cells. In conclusion, our findings underline the role of Hsp90/Cdc37 and E2f4/Crm1 systems in the acquisition of a susceptible or resistant carcinogenic phenotype. The results also suggest that protection by CDC37 and CRM1 against growth restraint by P16(INK4A) influences the prognosis of human hepatocellular carcinoma.


Subject(s)
Carrier Proteins/physiology , Cell Cycle Proteins/physiology , Cyclin-Dependent Kinase Inhibitor p16/genetics , HSP90 Heat-Shock Proteins/physiology , Karyopherins/physiology , Liver Neoplasms/etiology , Receptors, Cytoplasmic and Nuclear/physiology , Adult , Aged , Animals , Carrier Proteins/genetics , Cell Cycle Proteins/genetics , Chaperonins , E2F4 Transcription Factor/genetics , Female , Gene Expression Regulation , HSP90 Heat-Shock Proteins/genetics , Humans , Karyopherins/genetics , Liver Neoplasms/chemically induced , Liver Neoplasms/genetics , Male , Middle Aged , RNA, Small Interfering/pharmacology , Rats , Rats, Inbred BN , Rats, Inbred F344 , Receptors, Cytoplasmic and Nuclear/genetics , Species Specificity , Exportin 1 Protein
12.
Carcinogenesis ; 25(3): 333-41, 2004 Mar.
Article in English | MEDLINE | ID: mdl-14604889

ABSTRACT

A number of genetic interactions are involved in the control of cell cycle, but their role and nature have not been completely clarified. The knowledge of the behavior of these interactions in hepatocellular carcinoma, could optimize preventive and therapeutic strategies based on cell cycle restraint. We studied downstream events following c-MYC and CYCLIN D1 gene inhibition, by lipoplex-delivered MYC and CYCLIN D1 antisense oligodeoxy nucleotides (aODNM, aODND1), in in vitro cultured human HepG2 and rat Morris 5123 hepatoma cells. 0.5-20 micro M aODN(M) and aODND1 inhibited in vitro growth of both cell types. Scramble oligomer (SCR) and sense ODNs had no or relatively poor effect. Ten micromolar aODNM and aODND1, but not SCR, also induced a significant increase in the apoptotic index of HepG2 and 5123 cells, and inhibited colony formation in soft agar by HepG2 cells. Treatment of the cells with aODNM plus aODND1 had no additive effect on growth and apoptosis. aODNM and aODND1 induced >50% decrease in c-MYC and CYCLIN D1 gene expression, respectively, at both mRNA and protein level. The inhibition of gene expression by aODNs was highly specific, and SCR was without effect. The reduction in c-MYC and CYCLIN D1 expression by aODNs, was associated with a >50% decrease in E2F1 mRNA and protein production, without changes in CYCLIN A and CYCLIN E expression. These results suggest the involvement of both c-MYC and CYCLIN D1 on E2F1 gene function, and indicate that aODNM and aODND1 may inhibit hepatoma cell growth through down-regulation of the E2F1 gene. The inhibition of E2F1 gene expression by E2F1 aODN, was associated with strong growth restraint of HepG2 cells. Thus, interactions of c-MYC and CYCLIN D1 with E2F1 gene are essential for cell cycle activity in hepatoma cells, and their inhibition may have a therapeutic effect.


Subject(s)
Antineoplastic Agents/pharmacology , Cell Cycle Proteins , DNA-Binding Proteins , Genes, bcl-1/drug effects , Genes, myc/drug effects , Liver Neoplasms/drug therapy , Oligodeoxyribonucleotides, Antisense/pharmacology , Transcription Factors/drug effects , Animals , Down-Regulation/drug effects , E2F Transcription Factors , E2F1 Transcription Factor , Humans , Precipitin Tests , Rats , Transcription Factors/biosynthesis , Transcription Factors/genetics , Tumor Cells, Cultured
13.
Int J Cancer ; 105(1): 70-5, 2003 May 20.
Article in English | MEDLINE | ID: mdl-12672032

ABSTRACT

Low DNA synthesis and high redifferentiation (remodeling) characterize neoplastic nodules induced by chemical carcinogens in hybrid BFF1 rats, generated by crossing the susceptible F344 and resistant BN strains. We performed whole-genome scanning of BFF2 rats to identify loci controlling remodeling of nodules induced, 32 weeks after initiation with diethylnitrosamine, by the RH protocol. Remodeling nodules were identified as areas lacking uniformity of GST-P immunostaining and with irregular margins. Two loci in suggestive linkage with the percentage of remodeling nodules were identified on chromosomes 7 and 1 (LOD scores 3.85 and 2.9 at D7Rat25 and D1Mgh14). Significant dosage-negative effect of the B allele on remodeling and additive interaction between these loci were found. Significant epistatic interactions, showing a recessive, remodeling-enhancing effect of B alleles, occurred between D1Mit3 and D11Rat11 (corrected p = 0.0013) and between D6Rat14 and D8Rat46 (corrected p = 0.028). These data show that remodeling of neoplastic nodules during rat hepatocarcinogenesis is under genetic control. Loci affecting remodeling map to chromosomal regions syntenic to chromosomal segments of human HCC showing structural abnormalities.


Subject(s)
Liver Neoplasms/genetics , Liver Neoplasms/pathology , Alleles , Animals , Chromosome Mapping , Epistasis, Genetic , Genetic Linkage , Genotype , Glutathione Transferase/metabolism , Lod Score , Neoplasms/metabolism , Phenotype , Quantitative Trait Loci , Rats , Rats, Inbred F344
SELECTION OF CITATIONS
SEARCH DETAIL