Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Clin Transl Sci ; 14(3): 1037-1048, 2021 05.
Article in English | MEDLINE | ID: mdl-33382916

ABSTRACT

LY2775240 is a highly selective, potent and orally-administered inhibitor of phosphodiesterase 4 (PDE4), and is being investigated as a treatment option for inflammatory disorders, such as psoriasis. LY2775240 was investigated in rodent and rhesus monkey nonclinical models. Treatment with LY2775240 led to significant reductions in TNFα production, a marker of PDE4 engagement upon immune activation, in both nonclinical models. In the first part of a 2-part first-in-human randomized study, a wide dose range of LY2775240 was safely evaluated and found to be well-tolerated with common adverse events (AEs) of nausea, diarrhea, and headache. No serious AEs were reported. The pharmacokinetic profile of LY2775240 was well-characterized, with a half-life that can support once-a-day dosing. An ex vivo pharmacodynamic (PD) assay demonstrated dose-dependent PDE4 target engagement as assessed by reduction in TNFα production. A 20 mg dose of LY2775240 led to near-maximal TNFα inhibition in this PD assay in the first part of the study and was selected for comparison with the clinical dose of apremilast (30 mg) in the crossover, second part of this study. The 20 mg dose of LY2775240 demonstrated sustained maximal (50%-80%) inhibition of TNFα over all timepoints over the 24-h duration. The comparator apremilast achieved peak inhibition of ~ 50% at only 4 h postdose with a return to about 10% inhibition within 12 h of dosing. In summary, the nonclinical data and safety, tolerability, and PK/PD data in healthy subjects supports further investigation of LY2775240 in inflammatory indications. Study Highlights WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC? Phosphodiesterase 4 (PDE4) inhibitors, such as apremilast, are currently approved to treat autoimmune disorders, such as psoriasis. LY2775240 is an oral PDE4 inhibitor being developed for treatment of a variety of inflammatory disorders. The degree of enzymatic inhibition achieved by PDE4 inhibitors clinically is poorly understood. WHAT QUESTION DID THIS STUDY ADDRESS? This study investigated single ascending doses of LY2775240, a highly selective oral PDE4 inhibitor, in healthy subjects. LY2775240 was well-tolerated over the dose range evaluated, and pharmacokinetic/pharmacodynamic (PD) profiles were well-characterized. WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE? This study evaluated different doses of LY2775240 and subsequently compared a selected LY2775240 dose with the clinical dose of apremilast with an ex vivo assay. This information builds a connection between target engagement and clinical efficacy. HOW MIGHT THIS CHANGE CLINICAL PHARMACOLOGY OR TRANSLATIONAL SCIENCE? This is the first report of an ex vivo PD assay that has been systematically implemented in a PDE4 inhibitor Phase 1 study. Early investigation of exposure-response relationships versus a comparator can support evaluation of clinically meaningful doses of investigational agents.


Subject(s)
Drugs, Investigational/pharmacology , Phosphodiesterase 4 Inhibitors/pharmacology , Administration, Oral , Adult , Animals , Cross-Over Studies , Cyclic Nucleotide Phosphodiesterases, Type 4/metabolism , Drug Evaluation, Preclinical , Drugs, Investigational/therapeutic use , Enzyme Assays , Female , Healthy Volunteers , Humans , Macaca mulatta , Male , Mice , Middle Aged , Phosphodiesterase 4 Inhibitors/therapeutic use , Psoriasis/drug therapy , Thalidomide/analogs & derivatives , Thalidomide/pharmacology , Thalidomide/therapeutic use
2.
J Am Soc Nephrol ; 25(2): 225-31, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24179165

ABSTRACT

Necrotizing and crescentic GN (NCGN) with a paucity of glomerular immunoglobulin deposits is associated with ANCA. The most common ANCA target antigens are myeloperoxidase (MPO) and proteinase 3. In a manner that requires activation of the alternative complement pathway, passive transfer of antibodies to mouse MPO (anti-MPO) induces a mouse model of ANCA NCGN that closely mimics human disease. Here, we confirm the importance of C5aR/CD88 in the mediation of anti-MPO-induced NCGN and report that C6 is not required. We further demonstrate that deficiency of C5a-like receptor (C5L2) has the reverse effect of C5aR/CD88 deficiency and results in more severe disease, indicating that C5aR/CD88 engagement enhances inflammation and C5L2 engagement suppresses inflammation. Oral administration of CCX168, a small molecule antagonist of human C5aR/CD88, ameliorated anti-MPO-induced NCGN in mice expressing human C5aR/CD88. These observations suggest that blockade of C5aR/CD88 might have therapeutic benefit in patients with ANCA-associated vasculitis and GN.


Subject(s)
Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis/prevention & control , Autoantigens/immunology , Glomerulonephritis/prevention & control , Peroxidase/immunology , Receptor, Anaphylatoxin C5a/antagonists & inhibitors , Administration, Oral , Animals , Complement C6/immunology , Complement Pathway, Alternative , Dose-Response Relationship, Drug , Gene Knock-In Techniques , Glomerulonephritis/complications , Glomerulonephritis/immunology , Hematuria/etiology , Hematuria/prevention & control , Humans , Immunization, Passive , Leukocytes , Metabolism, Inborn Errors/complications , Metabolism, Inborn Errors/immunology , Mice , Mice, Inbred C3H , Mice, Inbred C57BL , Mice, Knockout , Peroxidase/deficiency , Proteinuria/etiology , Proteinuria/prevention & control , Receptor, Anaphylatoxin C5a/deficiency , Receptor, Anaphylatoxin C5a/genetics , Receptors, Chemokine/deficiency , Receptors, Chemokine/genetics , Receptors, Chemokine/physiology , Recombinant Fusion Proteins , Urine/cytology
3.
Metabolism ; 62(11): 1623-32, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23953944

ABSTRACT

OBJECTIVE: CCR2 inhibition has produced promising experimental and clinical anti-hyperglycemic effects. These results support the thesis that insulin resistance and Type 2 diabetes (T2D) are associated with chronic unresolved inflammation. The aim of this study was to provide a broad analysis of the various physiological changes occurring in mouse models of T2D in connection with pharmacological CCR2 inhibition. MATERIALS/METHODS: A mouse-active chemical analogue of the clinical candidate CCX140-B was tested in diet-induced obese (DIO) mice and db/db mice. Measurements included: adipose tissue inflammatory macrophage counts; peripheral blood glucose levels at steady-state and after glucose and insulin challenges; peripheral blood insulin and adiponectin levels; 24-h urine output and urinary glucose levels; pancreatic islet number and size; hepatic triglyceride and glycogen content; and hepatic glucose-6-phosphatase levels. RESULTS: In DIO mice, the CCR2 antagonist completely blocked the recruitment of inflammatory macrophages to visceral adipose tissue. The mice exhibited reduced hyperglycemia and insulinemia, improved insulin sensitivity, increased circulating adiponectin levels, decreased pancreatic islet size and increased islet number. It also reduced urine output, glucose excretion, hepatic glycogen and triglyceride content and glucose 6-phosphatase levels. Similar effects were observed in the db/db diabetic mice. CONCLUSIONS: These data indicate that pharmacological inhibition of CCR2 in models of T2D can reduce inflammation in adipose tissue, alter hepatic metabolism and ameliorate multiple diabetic parameters. These mechanisms may contribute to the promising anti-diabetic effects seen in humans with at least one CCR2 antagonist.


Subject(s)
Adipose Tissue/pathology , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Hypoglycemic Agents/pharmacology , Insulin Resistance , Macrophages , Obesity/metabolism , Receptors, CCR2/antagonists & inhibitors , Adiponectin/blood , Animals , Biomarkers/blood , Blood Glucose/metabolism , Diabetes Mellitus, Experimental/blood , Diabetes Mellitus, Experimental/etiology , Diabetes Mellitus, Experimental/pathology , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/etiology , Diabetes Mellitus, Type 2/pathology , Diet, High-Fat , Dose-Response Relationship, Drug , Glucose-6-Phosphatase/metabolism , Glycogen/metabolism , Glycosuria/diagnosis , Hypoglycemic Agents/therapeutic use , Inflammation/metabolism , Insulin/administration & dosage , Insulin/blood , Insulin-Secreting Cells/pathology , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Obesity/blood , Obesity/complications , Obesity/etiology , Receptors, CCR2/metabolism , Triglycerides/metabolism
4.
Am J Physiol Renal Physiol ; 305(9): F1288-97, 2013 Nov 01.
Article in English | MEDLINE | ID: mdl-23986513

ABSTRACT

Chemokine (C-C motif) receptor 2 (CCR2) is central for the migration of monocytes into inflamed tissues. The novel CCR2 antagonist CCX140-B, which is currently in two separate phase 2 clinical trials in diabetic nephropathy, has recently been shown to reduce hemoglobin A1c and fasting blood glucose levels in type 2 diabetics. In this report, we describe the effects of this compound on glycemic and renal function parameters in diabetic mice. Since CCX140-B has a low affinity for mouse CCR2, transgenic human CCR2 knockin mice were generated and rendered diabetic with either a high-fat diet (diet-induced obesity) or by deletion of the leptin receptor gene (db/db). CCX140-B treatment in both models resulted in decreased albuminuria, which was associated with decreased glomerular hypertrophy and increased podocyte density. Moreover, treatment of diet-induced obese mice with CCX140-B resulted in decreased levels of fasting blood glucose and insulin, normalization of homeostatic model assessment of insulin resistance values, and decreased numbers of adipose tissue inflammatory macrophages. Unlike other CCR2 antagonists, CCX140-B had no effect on plasma levels of the CCR2 ligand CCL2 or on the numbers of blood monocytes. These results support the ongoing evaluation of this molecule in diabetic subjects with impaired renal function.


Subject(s)
Diabetic Nephropathies/drug therapy , Hyperglycemia/drug therapy , Kidney/drug effects , Receptors, CCR2/antagonists & inhibitors , Sulfonamides/pharmacology , Animals , Diabetic Nephropathies/genetics , Gene Knock-In Techniques , HEK293 Cells , Humans , Insulin Resistance , Kidney Function Tests , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Receptors, CCR2/genetics
5.
Bioorg Med Chem Lett ; 23(5): 1228-31, 2013 Mar 01.
Article in English | MEDLINE | ID: mdl-23374868

ABSTRACT

A novel series of CCR1 antagonists based on the 1-(4-phenylpiperazin-1-yl)-2-(1H-pyrazol-1-yl)ethanone scaffold was identified by screening a compound library utilizing CCR1-expressing human THP-1 cells. SAR studies led to the discovery of the highly potent and selective CCR1 antagonist 14 (CCR1 binding IC(50)=4 nM using [(125)I]-CCL3 as the chemokine ligand). Compound 14 displayed promising pharmacokinetic and toxicological profiles in preclinical species.


Subject(s)
Piperazines/pharmacology , Pyrazoles/pharmacology , Receptors, CCR1/antagonists & inhibitors , Cell Line , Humans , Piperazines/chemistry , Pyrazoles/chemistry , Receptors, CCR1/metabolism , Structure-Activity Relationship
6.
Blood ; 120(7): 1449-57, 2012 Aug 16.
Article in English | MEDLINE | ID: mdl-22618707

ABSTRACT

The chemokine CCL3/MIP-1α is a risk factor in the outcome of multiple myeloma (MM), particularly in the development of osteolytic bone disease. This chemokine, highly overexpressed by MM cells, can signal mainly through 2 receptors, CCR1 and CCR5, only 1 of which (CCR1) is responsive to CCL3 in human and mouse osteoclast precursors. CCR1 activation leads to the formation of osteolytic lesions and facilitates tumor growth. Here we show that formation of mature osteoclasts is blocked by the highly potent and selective CCR1 antagonist CCX721, an analog of the clinical compound CCX354. We also show that doses of CCX721 selected to completely inhibit CCR1 produce a profound decrease in tumor burden and osteolytic damage in the murine 5TGM1 model of MM bone disease. Similar effects were observed when the antagonist was used prophylactically or therapeutically, with comparable efficacy to that of zoledronic acid. 5TGM1 cells were shown to express minimal levels of CCR1 while secreting high levels of CCL3, suggesting that the therapeutic effects of CCX721 result from CCR1 inhibition on non-MM cells, most likely osteoclasts and osteoclast precursors. These results provide a strong rationale for further development of CCR1 antagonists for the treatment of MM and associated osteolytic bone disease.


Subject(s)
Chemokines/pharmacology , Chemokines/therapeutic use , Multiple Myeloma/drug therapy , Osteolysis/drug therapy , Receptors, CCR1/antagonists & inhibitors , Tumor Burden/drug effects , Administration, Oral , Animals , Cell Death/drug effects , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Cellular Microenvironment/drug effects , Chemokines/administration & dosage , Disease Models, Animal , Dose-Response Relationship, Drug , Humans , Immunocompetence/drug effects , Inflammation/drug therapy , Inflammation/pathology , Mice , Mice, Inbred C57BL , Models, Biological , Monocytes/drug effects , Monocytes/metabolism , Multiple Myeloma/complications , Multiple Myeloma/pathology , Osteoclasts/drug effects , Osteoclasts/metabolism , Osteoclasts/pathology , Osteolysis/complications , Osteolysis/pathology , Rats , Receptors, CCR1/metabolism
7.
J Pharmacol Exp Ther ; 2012 Jun 05.
Article in English | MEDLINE | ID: mdl-22378937

ABSTRACT

The following manuscript was published as a Fast Forward article on February 29, 2012: Sullivan TJ, Dairaghi DJ, Krasinski A, Miao Z, Wang Y, Zhao BN, Baumgart T, Berahovich R, Ertl LS, Pennell A, Seitz L, Miao S, Ungashe S, Wei Z, Johnson D, Boring L, Tsou C-L, Charo IF, Bekker P, Schall TJ, and Jaen JC, Characterization of CCX140-B, an orally bioavailable antagonist of the CCR2 chemokine receptor, for the treatment of type 2 diabetes and associated complications. J Pharmacol Exp Ther jpet.111.190918; doi:10.1124/jpet.111.190918 It was later found that the chemical identity of a compound cited in the article, CCX140-B, was not sufficiently disclosed. The authors are unable, at this time, to provide the chemical identity of CCX140-B in accordance with the editorial policies of The Journal of Pharmacology and Experimental Therapeutics. As a result, the authors have voluntarily withdrawn this manuscript from publication. We apologize for any inconvenience this may cause JPET's readers.

8.
J Pharmacol Exp Ther ; 335(1): 61-9, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20660125

ABSTRACT

The chemokine system represents a diverse group of G protein-coupled receptors responsible for orchestrating cell recruitment under both homeostatic and inflammatory conditions. Chemokine receptor 9 (CCR9) is a chemokine receptor known to be central for migration of immune cells into the intestine. Its only ligand, CCL25, is expressed at the mucosal surface of the intestine and is known to be elevated in intestinal inflammation. To date, there are no reports of small-molecule antagonists targeting CCR9. We report, for the first time, the discovery of a small molecule, CCX282-B, which is an orally bioavailable, selective, and potent antagonist of human CCR9. CCX282-B inhibited CCR9-mediated Ca(2+) mobilization and chemotaxis on Molt-4 cells with IC(50) values of 5.4 and 3.4 nM, respectively. In the presence of 100% human serum, CCX282-B inhibited CCR9-mediated chemotaxis with an IC(50) of 33 nM, and the addition of α1-acid glycoprotein did not affect its potency. CCX282-B inhibited chemotaxis of primary CCR9-expressing cells to CCL25 with an IC(50) of 6.8 nM. CCX282-B was an equipotent inhibitor of CCL25-directed chemotaxis of both splice forms of CCR9 (CCR9A and CCR9B) with IC(50) values of 2.8 and 2.6 nM, respectively. CCX282-B also inhibited mouse and rat CCR9-mediated chemotaxis. Inhibition of CCR9 with CCX282-B results in normalization of Crohn's disease such as histopathology associated with the TNF(ΔARE) mice. Analysis of the plasma level of drug associated with this improvement provides an understanding of the pharmacokinetic/pharmacodynamic relationship for CCR9 antagonists in the treatment of intestinal inflammation.


Subject(s)
Gastrointestinal Agents/pharmacology , Inflammatory Bowel Diseases/drug therapy , Receptors, CCR/antagonists & inhibitors , Sulfonamides/pharmacology , Administration, Oral , Animals , Calcium/metabolism , Cell Line , Chemotaxis, Leukocyte/drug effects , Crohn Disease/drug therapy , Crohn Disease/pathology , Gastrointestinal Agents/pharmacokinetics , Humans , Ileitis/chemically induced , Ileitis/drug therapy , Ileitis/pathology , Mice , Mice, Inbred C57BL , Radioligand Assay , Rats , T-Lymphocytes/drug effects , T-Lymphocytes/metabolism , Tretinoin/pharmacology , Tumor Necrosis Factor-alpha/physiology
9.
Transplantation ; 87(3): 360-9, 2009 Feb 15.
Article in English | MEDLINE | ID: mdl-19202440

ABSTRACT

BACKGROUND: Current immunosuppression regimens are toxic to transplant recipients and, in many cases, acute rejection episodes occur because of escape of donor-reactive lymphocytes from the immunosuppression. T cells are the mediators of acute, cell-mediated graft damage and are hypothesized to use the CXCR3 chemokine axis for migration into the allograft. This study investigates the effect of CXCR3 blockade using a nonpeptide, small molecule inhibitor, AMG1237845, in murine cardiac allograft survival. METHODS: C57BL/6 (H-2) mice received vascularized cardiac allografts from A/J (H-2) donors and were treated with the CXCR3 antagonist. Histologic and flow cytometric analyses were used to measure infiltration of leukocytes, and quantitative reverse-transcriptase polymerase chain reaction and interferon-gamma ELISPOT assays were used to measure donor-specific reactivity. RESULTS: CXCR3 antagonism modestly prolonged allograft survival compared with vehicle treatment, but at time-matched intervals posttransplant, neutrophil, CD8, and CD4 T cell infiltration was indistinguishable. Although proliferation of donor-reactive naïve T cells was unaffected by CXCR3 antagonism, the frequency of interferon-gamma-producing cells in the recipient spleen was significantly reduced by AMG1237845 treatment. CXCR3 blockade for 30 days synergized with short-term, low-dose anti-CD154 monoclonal antibodies to prolong survival past 50 days in 75% of grafts and past 80 days in 25% of the cases. CONCLUSIONS: These results indicate that in synergy with co-stimulation blockade, CXCR3 is a viable therapeutic target to prevent acute graft rejection.


Subject(s)
Graft Survival/immunology , Heart Transplantation/immunology , Interferon-gamma/immunology , Receptors, CXCR3/antagonists & inhibitors , Transplantation, Homologous/immunology , Animals , Graft Rejection/immunology , Immunosuppressive Agents/therapeutic use , Mice , Mice, Inbred A , Mice, Inbred BALB C , Mice, Inbred C57BL , Transplantation, Heterotopic
10.
Bioorg Med Chem Lett ; 16(10): 2800-3, 2006 May 15.
Article in English | MEDLINE | ID: mdl-16497499

ABSTRACT

A series of 2-aminothiazole-derived antagonists of the CCR4 receptor has been synthesized and their affinity for the receptor evaluated using a [(125)I]TARC (CCL17) displacement assay. Optimization of these compounds for potency and pharmacokinetic properties led to the discovery of potent, orally bioavailable antagonists.


Subject(s)
Receptors, Chemokine/antagonists & inhibitors , Thiazoles/pharmacology , Cell Line , Humans , Receptors, CCR4 , Thiazoles/pharmacokinetics
11.
J Biol Chem ; 277(4): 2785-9, 2002 Jan 25.
Article in English | MEDLINE | ID: mdl-11696549

ABSTRACT

In compiling a comprehensive map of the ligand binding capacity of elements within the chemokine system, we have determined the spectrum of chemokines capable of interacting with the poxvirus-encoded viral CC chemokine inhibitor, vCCI. More than 80 chemokines were tested in parallel for their ability to displace radiolabeled signature chemokines from vCCI. Of these chemokines, 26 showed potential high affinity interactions. These interactions revealed an expanded spectrum of binding capacity for vCCI to now include molecules such as human myeloid progenitor inhibitory factor-1 as ligands. In addition, high affinity viral protein-protein interactions were revealed. For example, binding between poxvirus vCCI and the herpesvirus vMIP-II from HHV8 occurs with IC(50) approximately 10-50 nm. Unusual dissociation kinetics were observed between certain chemokines and vCCI. Notably, many ligands displayed a precipitous displacement profile, suggesting marked positive cooperativity of binding. Finally, heterologous competition provided evidence for overlapping but distinct binding sites for the many chemokines that bind to vCCI. The determination of the binding fingerprint and unusual binding interactions of vCCI with a large number of chemokines suggest a finely honed evolutionary strategy of chemokine sequestration during viral infection.


Subject(s)
Chemokines/metabolism , Poxviridae/chemistry , Viral Proteins/chemistry , Binding, Competitive , Detergents/pharmacology , Dose-Response Relationship, Drug , Epitopes , Inhibitory Concentration 50 , Kinetics , Ligands , Protein Binding , Virulence Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...